Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaşkan, Özgür.-
dc.contributor.authorHaldenbilen, Soner.-
dc.contributor.authorCeylan, Halim.-
dc.date.accessioned2019-08-16T12:11:15Z
dc.date.available2019-08-16T12:11:15Z
dc.date.issued2009-
dc.identifier.issn0096-3003-
dc.identifier.urihttps://hdl.handle.net/11499/6806-
dc.identifier.urihttps://doi.org/10.1016/j.amc.2009.01.025-
dc.description.abstractThis study proposes an improved solution algorithm using ant colony optimization (ACO) for finding global optimum for any given test functions. The procedure of the ACO algorithms simulates the decision-making processes of ant colonies as they forage for food and is similar to other artificial intelligent techniques such as Tabu search, Simulated Annealing and Genetic Algorithms. ACO algorithms can be used as a tool for optimizing continuous and discrete mathematical functions. The proposed algorithm is based on each ant searches only around the best solution of the previous iteration with ß. The proposed algorithm is called as ACORSES, an abbreviation of ACO Reduced SEarch Space. ß is proposed for improving ACO's solution performance to reach global optimum fairly quickly. The ACORSES is tested on fourteen mathematical test functions taken from literature and encouraging results were obtained. The performance of ACORSES is compared with other optimization methods. The results showed that the ACORSES performs better than other optimization algorithms, available in literature in terms of minimum values of objective functions and number of iterations. © 2009 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnt colony optimizationen_US
dc.subjectFunction minimizationen_US
dc.subjectMeta-heuristicsen_US
dc.subjectReduced search spaceen_US
dc.subjectACO algorithmsen_US
dc.subjectAnt coloniesen_US
dc.subjectArtificial intelligenten_US
dc.subjectDecision-making processen_US
dc.subjectGlobal optimumen_US
dc.subjectImproving performanceen_US
dc.subjectMathematical functionsen_US
dc.subjectMinimum valuesen_US
dc.subjectNew solutionsen_US
dc.subjectNumber of iterationsen_US
dc.subjectObjective functionsen_US
dc.subjectOptimization algorithmsen_US
dc.subjectOptimization methodsen_US
dc.subjectSolution algorithmsen_US
dc.subjectTest functionsen_US
dc.subjectAlgorithmsen_US
dc.subjectConstrained optimizationen_US
dc.subjectFunctionsen_US
dc.subjectHeuristic methodsen_US
dc.subjectSimulated annealingen_US
dc.subjectTabu searchen_US
dc.subjectThree term control systemsen_US
dc.subjectFunction evaluationen_US
dc.titleA new solution algorithm for improving performance of ant colony optimizationen_US
dc.typeArticleen_US
dc.identifier.volume211en_US
dc.identifier.issue1en_US
dc.identifier.startpage75
dc.identifier.startpage75en_US
dc.identifier.endpage84en_US
dc.authorid0000-0001-5016-8328-
dc.authorid0000-0002-6548-6481-
dc.authorid0000-0002-4616-5439-
dc.identifier.doi10.1016/j.amc.2009.01.025-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-64049119705en_US
dc.identifier.wosWOS:000265161300007en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

46
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

31
checked on Nov 21, 2024

Page view(s)

56
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.