Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6837
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltan Dombaycı, Ömer-
dc.contributor.authorGölcü, Mustafa-
dc.date.accessioned2019-08-16T12:11:40Z-
dc.date.available2019-08-16T12:11:40Z-
dc.date.issued2009-
dc.identifier.issn0960-1481-
dc.identifier.urihttps://hdl.handle.net/11499/6837-
dc.identifier.urihttps://doi.org/10.1016/j.renene.2008.07.007-
dc.description.abstractThe objective of this paper is to develop an artificial neural network (ANN) model which can be used to predict daily mean ambient temperatures in Denizli, south-western Turkey. In order to train the model, temperature values, measured by The Turkish State Meteorological Service over three years (2003-2005) were used as training data and the values of 2006 were used as testing data. In order to determine the optimal network architecture, various network architectures were designed; different training algorithms were used; the number of neuron and hidden layer and transfer functions in the hidden layer/output layer were changed. The predictions were performed by taking different number of hidden layer neurons between 3 and 30. The best result was obtained when the number of the neurons is 6. The selected ANN model of a multi-layer consists of 3 inputs, 6 hidden neurons and 1 output. Training of the network was performed by using Levenberg-Marquardt (LM) feed-forward backpropagation algorithms. A computer program was performed under Matlab 6.5 software. For each network, fraction of variance (R2) and root-mean squared error (RMSE) values were calculated and compared. The results show that the ANN approach is a reliable model for ambient temperature prediction. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofRenewable Energyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAmbient temperatureen_US
dc.subjectArtificial neural networken_US
dc.subjectPredictionen_US
dc.subjectBackpropagationen_US
dc.subjectBackpropagation algorithmsen_US
dc.subjectForecastingen_US
dc.subjectImage classificationen_US
dc.subjectMATLABen_US
dc.subjectMilitary operationsen_US
dc.subjectNeural networksen_US
dc.subjectNeuronsen_US
dc.subjectTemperatureen_US
dc.subjectAmbient temperaturesen_US
dc.subjectAnn modelsen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectArtificial neural networksen_US
dc.subjectCase studiesen_US
dc.subjectComputer programsen_US
dc.subjectHidden layer neuronsen_US
dc.subjectHidden layersen_US
dc.subjectHidden neuronsen_US
dc.subjectLevenberg-marquardten_US
dc.subjectOptimal network architecturesen_US
dc.subjectReliable modelsen_US
dc.subjectSquared errorsen_US
dc.subjectTemperature valuesen_US
dc.subjectTesting datumsen_US
dc.subjectTraining algorithmsen_US
dc.subjectTraining datumsen_US
dc.subjectTurkishsen_US
dc.subjectNetwork architectureen_US
dc.subjectair temperatureen_US
dc.subjectalgorithmen_US
dc.subjectartificial neural networken_US
dc.subjectsoftwareen_US
dc.subjectDenizli [Turkey]en_US
dc.subjectEurasiaen_US
dc.subjectTurkeyen_US
dc.titleDaily means ambient temperature prediction using artificial neural network method: A case study of Turkeyen_US
dc.typeArticleen_US
dc.identifier.volume34en_US
dc.identifier.issue4en_US
dc.identifier.startpage1158-
dc.identifier.startpage1158en_US
dc.identifier.endpage1161en_US
dc.identifier.doi10.1016/j.renene.2008.07.007-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-56049113721en_US
dc.identifier.wosWOS:000262203000030en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept20.02. Metallurgical And Materials Engineering-
crisitem.author.dept20.01. Automotive Engineering-
Appears in Collections:Denizli Teknik Bilimler Meslek Yüksekokulu Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknik Eğitim Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

100
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

136
checked on Nov 15, 2024

Page view(s)

68
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.