Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6908
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFırat, Mahmut.-
dc.contributor.authorGüngör, Mahmud.-
dc.date.accessioned2019-08-16T12:12:46Z
dc.date.available2019-08-16T12:12:46Z
dc.date.issued2009-
dc.identifier.isbn09659978 (ISSN)-
dc.identifier.urihttps://hdl.handle.net/11499/6908-
dc.identifier.urihttps://doi.org/10.1016/j.advengsoft.2008.12.001-
dc.description.abstractIn this study, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN) approaches are used to predict the scour depth around circular bridge piers. Hundred and sixty five data collected from various experimental studies, are used to predict equilibrium scour depth. The model consisting of the combination of dimensional data involving the input variables is constructed. The performance of the models in training and testing sets are compared with observations. Then, the model is also tested by Multiple Linear Regression (MLR) and empirical formula. The results of all approaches are compared in order to get more reliable comparison. The results indicated that GRNN can be applied successfully for prediction of scour depth around circular bridge piers. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofAdvances in Engineering Softwareen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectCircular bridge piersen_US
dc.subjectGeneralized Regression Neural Networksen_US
dc.subjectScour depth predictionen_US
dc.subjectBackpropagationen_US
dc.subjectBridge piersen_US
dc.subjectErosionen_US
dc.subjectPiersen_US
dc.subjectRegression analysisen_US
dc.subjectScouren_US
dc.subjectEmpirical formulasen_US
dc.subjectExperimental studiesen_US
dc.subjectFeed-forward neural networksen_US
dc.subjectInput variablesen_US
dc.subjectMultiple linear regressionsen_US
dc.subjectTraining and testingen_US
dc.subjectNeural networksen_US
dc.titleGeneralized Regression Neural Networks and Feed Forward Neural Networks for prediction of scour depth around bridge piersen_US
dc.typeArticleen_US
dc.identifier.volume40en_US
dc.identifier.issue8en_US
dc.identifier.startpage731
dc.identifier.startpage731en_US
dc.identifier.endpage737en_US
dc.identifier.doi10.1016/j.advengsoft.2008.12.001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-64849117838en_US
dc.identifier.wosWOS:000266339000022en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

151
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

132
checked on Dec 20, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.