Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6927
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYagiz, S.-
dc.contributor.authorGokceoglu, C.-
dc.contributor.authorSezer, E.-
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T12:13:03Z
dc.date.available2019-08-16T12:13:03Z
dc.date.issued2009-
dc.identifier.issn0952-1976-
dc.identifier.urihttps://hdl.handle.net/11499/6927-
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2009.03.007-
dc.description.abstractPredicting tunnel boring machine (TBM) performance is a crucial issue for the accomplishment of a mechanical tunnel project, excavating via full face tunneling machine. Many models and equations have previously been introduced to estimate TBM performance based on properties of both rock and machine employing various statistical analysis techniques. However, considering the nature of the problem, it is relatively difficult to estimate tunnel boring machine performance by linear prediction models. Artificial neural networks (ANNs) and non-linear multiple regression models have great potential for establishing such prediction models. The purpose of the present study is the construction of non-linear multivariable prediction models to estimate TBM performance as a function of rock properties. For this purpose, rock properties and machine data were collected from recently completed TBM tunnel project in the City of New York, USA and consequently the database was established to develop performance prediction models utilizing the ANN and the non-linear multiple regression methods. This paper presents the results of study into the application of the non-linear prediction approaches providing the acceptable precise performance estimations. © 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectNon-linear multiple regressionen_US
dc.subjectRock propertiesen_US
dc.subjectTBM prognosisen_US
dc.subjectTunnelingen_US
dc.subjectBoring machines (machine tools)en_US
dc.subjectBoring toolsen_US
dc.subjectElectron tunnelingen_US
dc.subjectForecastingen_US
dc.subjectNeural networksen_US
dc.subjectRegression analysisen_US
dc.subjectRocksen_US
dc.subjectTunneling (excavation)en_US
dc.subjectTunneling machinesen_US
dc.subjectLinear prediction modelsen_US
dc.subjectNon linearen_US
dc.subjectNon-linear predictionsen_US
dc.subjectPerformance estimationen_US
dc.subjectPerformance prediction modelsen_US
dc.subjectTunnel boring machine(TBM)en_US
dc.subjectConstruction equipmenten_US
dc.titleApplication of two non-linear prediction tools to the estimation of tunnel boring machine performanceen_US
dc.typeArticleen_US
dc.identifier.volume22en_US
dc.identifier.issue4-5en_US
dc.identifier.startpage808
dc.identifier.startpage808en_US
dc.identifier.endpage814en_US
dc.authorid0000-0003-3806-1442-
dc.identifier.doi10.1016/j.engappai.2009.03.007-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-65749099794en_US
dc.identifier.wosWOS:000268057700033en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

254
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

220
checked on Nov 21, 2024

Page view(s)

58
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.