Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6933
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFırat, Mahmut.-
dc.contributor.authorYurdusev, M.A.-
dc.contributor.authorTuran, M.E.-
dc.date.accessioned2019-08-16T12:13:08Z
dc.date.available2019-08-16T12:13:08Z
dc.date.issued2009-
dc.identifier.issn0920-4741-
dc.identifier.urihttps://hdl.handle.net/11499/6933-
dc.identifier.urihttps://doi.org/10.1007/s11269-008-9291-3-
dc.description.abstractVarious Artificial Neural Network techniques such as Generalized Regression Neural Networks (GRNN), Feed Forward Neural Networks (FFNN) and Radial Basis Neural Networks (RBNN) have been evaluated based on their performance in forecasting monthly water consumptions from several socio-economic and climatic factors, which affect water use. The data set including total 108 data records is divided into two subsets, training and testing. The models consisting of the combination of the independent variables are constructed and the best fit input structure is investigated. The performance of ANN models in training and testing stages are compared with the observed water consumption values to identify the best fit forecasting model. For this purpose, some performance criteria such as Normalized Root Mean Square Error (NRMSE), efficiency (E) and correlation coefficient (CORR) are calculated for all models. The best fit models are also trained and tested by Multiple Linear Regression (MLR). The results indicated that GRNN outperforms all other methods in modeling monthly water consumptions. © Springer Science+Business Media B.V. 2008.en_US
dc.language.isoenen_US
dc.relation.ispartofWater Resources Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANNen_US
dc.subjectDemand forecastingen_US
dc.subjectGRNNen_US
dc.subjectWater consumptionen_US
dc.subjectWater managementen_US
dc.subjectBackpropagationen_US
dc.subjectForecastingen_US
dc.subjectStatistical testsen_US
dc.subjectWater supplyen_US
dc.subjectArtificial neural networksen_US
dc.subjectBest fitsen_US
dc.subjectBest-fit modelsen_US
dc.subjectClimatic factorsen_US
dc.subjectCorrelation coefficientsen_US
dc.subjectData recordsen_US
dc.subjectData setsen_US
dc.subjectFeed-forward neural networksen_US
dc.subjectForecasting modelsen_US
dc.subjectGeneralized regression neural networksen_US
dc.subjectIndependent variablesen_US
dc.subjectMultiple linear regressionsen_US
dc.subjectMunicipal watersen_US
dc.subjectPerformance criterionen_US
dc.subjectRadial basis neural networksen_US
dc.subjectRoot mean square errorsen_US
dc.subjectSocio-economicen_US
dc.subjectTraining and testingen_US
dc.subjectWater useen_US
dc.subjectNeural networksen_US
dc.subjectartificial neural networken_US
dc.subjectclimate effecten_US
dc.subjectcorrelationen_US
dc.subjectefficiency measurementen_US
dc.subjectforecasting methoden_US
dc.subjectmultiple regressionen_US
dc.subjectperformance assessmenten_US
dc.subjectregression analysisen_US
dc.subjectsocioeconomic conditionsen_US
dc.subjectwater useen_US
dc.titleEvaluation of artificial neural network techniques for municipal water consumption modelingen_US
dc.typeArticleen_US
dc.identifier.volume23en_US
dc.identifier.issue4en_US
dc.identifier.startpage617
dc.identifier.startpage617en_US
dc.identifier.endpage632en_US
dc.authorid0000-0002-8010-9289-
dc.identifier.doi10.1007/s11269-008-9291-3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-60849104783en_US
dc.identifier.wosWOS:000263509900001en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

100
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

85
checked on Nov 21, 2024

Page view(s)

34
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.