Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKovan, Volkan-
dc.contributor.authorHammer, J.-
dc.contributor.authorMai, R.-
dc.contributor.authorYuksel, M.-
dc.date.accessioned2019-08-16T12:14:18Z
dc.date.available2019-08-16T12:14:18Z
dc.date.issued2008-
dc.identifier.issn0960-3409-
dc.identifier.urihttps://hdl.handle.net/11499/7017-
dc.identifier.urihttps://doi.org/10.3184/096034008X331229-
dc.description.abstractIn this study, an artificial neural network model was developed to predict the thermal-mechanical fatigue life and pure isothermal low-cycle fatigue life of oxide dispersion strengthened nickel-based superalloy PM 1000. The input parameters to the model consisted of the concentration of five inputs: mean temperature, temperature amplitude, mean total strain, total strain amplitude, and heating/cooling rate. The calculated results fit perfectly with the experimental data in both types of fatigue experiments. Furthermore, the interactions between heating/cooling rate and thermal-mechanical fatigue life were estimated based on the obtained artificial neural network model. © 2008 Science Reviews 2000 Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofMaterials at High Temperaturesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectFatigue life predictionen_US
dc.subjectLow-cycle fatigueen_US
dc.subjectNickelbased superalloyen_US
dc.subjectThermal-mechanical fatigueen_US
dc.subjectAluminum powder metallurgyen_US
dc.subjectBackpropagationen_US
dc.subjectConcentration (process)en_US
dc.subjectConcrete beams and girdersen_US
dc.subjectDispersion (waves)en_US
dc.subjectFatigue of materialsen_US
dc.subjectImage classificationen_US
dc.subjectLife cycleen_US
dc.subjectNickel alloysen_US
dc.subjectNickel oxideen_US
dc.subjectPermanent magnetsen_US
dc.subjectSuperalloysen_US
dc.subjectSuperconducting wireen_US
dc.subjectNeural networksen_US
dc.titleModelling by artificial neural network of high temperature fatigue life of oxide dispersion strengthened nickel-based superalloy PM 1000en_US
dc.typeArticleen_US
dc.identifier.volume25en_US
dc.identifier.issue2en_US
dc.identifier.startpage81
dc.identifier.startpage81en_US
dc.identifier.endpage88en_US
dc.authorid0000-0002-0599-525X-
dc.identifier.doi10.3184/096034008X331229-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-55149096155en_US
dc.identifier.wosWOS:000261359000003en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

26
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.