Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7078
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, Halil-
dc.contributor.authorAyvaz, Mustafa Tamer-
dc.date.accessioned2019-08-16T12:15:17Z-
dc.date.available2019-08-16T12:15:17Z-
dc.date.issued2008-
dc.identifier.issn1431-2174-
dc.identifier.urihttps://hdl.handle.net/11499/7078-
dc.identifier.urihttps://doi.org/10.1007/s10040-008-0279-0-
dc.description.abstractAn artificial neural network (ANN) model is proposed for the simultaneous determination of transmissivity and storativity distributions of a heterogeneous aquifer system. ANNs may be useful tools for parameter identification problems due to their ability to solve complex nonlinear problems. As an extension of previous study - Karahan H, Ayvaz MT (2006) Forecasting aquifer parameters using artificial neural networks, J Porous Media 9(5):429-444 - the performance of the proposed ANN model is tested on a two-dimensional hypothetical aquifer system for transient flow conditions. In the proposed ANN model, Cartesian coordinates of observation wells, associated piezometric heads and observation time are used as inputs while corresponding transmissivity and storativity values are used as outputs. The training, validation and testing processes of the ANN model are performed under two scenarios. In scenario 1, all the sampled data are used through the simulation time. However, in the scenario 2, there are data gaps due to irregular observations. By using the determined synaptic network weights, transmissivity and storativity distributions are predicted. In addition, the performance of the proposed ANN is tested for different noise data conditions. Results showed that the developed ANN model may be used in simultaneous aquifer parameter estimation problems. © Springer-Verlag 2008.en_US
dc.language.isoenen_US
dc.relation.ispartofHydrogeology Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGroundwater flowen_US
dc.subjectInverse modelingen_US
dc.subjectMulti-parametersen_US
dc.subjectNeural networksen_US
dc.subjectParameter identificationen_US
dc.subjectaquiferen_US
dc.subjectartificial neural networken_US
dc.subjectgroundwater flowen_US
dc.subjectidentification methoden_US
dc.subjectmodel validationen_US
dc.subjectnonlinearityen_US
dc.subjectnumerical modelen_US
dc.subjectparameterizationen_US
dc.subjectperformance assessmenten_US
dc.subjecttransient flowen_US
dc.subjecttransmissivityen_US
dc.subjectwell wateren_US
dc.titleSimultaneous parameter identification of a heterogeneous aquifer system using artificial neural networksen_US
dc.typeArticleen_US
dc.identifier.volume16en_US
dc.identifier.issue5en_US
dc.identifier.startpage817-
dc.identifier.startpage817en_US
dc.identifier.endpage827en_US
dc.authorid0000-0001-5346-5686-
dc.authorid0000-0002-8566-2825-
dc.identifier.doi10.1007/s10040-008-0279-0-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-48449101338en_US
dc.identifier.wosWOS:000257933100002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

36
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

33
checked on Nov 21, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.