Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7094
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞekercioğlu, Tezcan-
dc.contributor.authorKovan, Volkan-
dc.date.accessioned2019-08-16T12:15:33Z
dc.date.available2019-08-16T12:15:33Z
dc.date.issued2008-
dc.identifier.issn0023-432X-
dc.identifier.urihttps://hdl.handle.net/11499/7094-
dc.description.abstractIn this study, a static shear force and fatigue life prediction model was developed using artificial neural network (ANN). The developed model was used to predict static shear force and fatigue life of adhesively bonded cylindrical joints for the surface roughness, bonding clearance and adherent such as steel, bronze and aluminium. The results showed that developed artificial neural network model was convenient and powerful tool for static shear force and fatigue life prediction of adhesively bonded cylindrical joints.en_US
dc.language.isoenen_US
dc.relation.ispartofKovove Materialyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdhesive jointsen_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectBonding strengthen_US
dc.subjectFatigueen_US
dc.titlePrediction of static shear force and fatigue life of adhesive joints by artificial neural networken_US
dc.typeArticleen_US
dc.identifier.volume46en_US
dc.identifier.issue1en_US
dc.identifier.startpage51
dc.identifier.startpage51en_US
dc.identifier.endpage57en_US
dc.authorid0000-0002-9359-8843-
dc.authorid0000-0002-0599-525X-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-47249111665en_US
dc.identifier.wosWOS:000255514400007en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 21, 2024

Page view(s)

70
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.