Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7116
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFırat, Mahmut-
dc.contributor.authorGüngör, Mahmud-
dc.date.accessioned2019-08-16T12:15:59Z
dc.date.available2019-08-16T12:15:59Z
dc.date.issued2008-
dc.identifier.issn0885-6087-
dc.identifier.urihttps://hdl.handle.net/11499/7116-
dc.identifier.urihttps://doi.org/10.1002/hyp.6812-
dc.description.abstractAccurate forecasting of hydrological time-series is a quite important issue for a wise and sustainable use of water resources. In this study, an adaptive neuro-fuzzy inference system (ANFIS) approach is used to construct a time-series forecasting system. In particular, the applicability of an ANFIS to the forecasting of the time-series is investigated. To illustrate the applicability and capability of an ANFIS, the River Great Menderes, located in western Turkey, is chosen as a case study area. The advantage of this method is that it uses the input-output data sets. A total of 5844 daily data sets collected from 1985 to 2000 are used for the time-series forecasting. Models having various input structures were constructed and the best structure was investigated. In addition, four various training/testing data sets were built by cross-validation methods and the best data set was obtained. The performance of the ANFIS models in training and testing sets was compared with observations and also evaluated. In order to get an accurate and reliable comparison, the best-fit model structure was also trained and tested by artificial neural networks and traditional time-series analysis techniques and the results compared. The results indicate that the ANFIS can be applied successfully and provide high accuracy and reliability for time-series modelling. Copyright © 2007 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.relation.ispartofHydrological Processesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANFISen_US
dc.subjectANNen_US
dc.subjectFuzzy logicen_US
dc.subjectHydrological time-seriesen_US
dc.subjectRiver great menderesen_US
dc.subjectArtificial intelligenceen_US
dc.subjectForecastingen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy systemsen_US
dc.subjectHarmonic analysisen_US
dc.subjectModal analysisen_US
dc.subjectNeural networksen_US
dc.subjectReusabilityen_US
dc.subjectSignal filtering and predictionen_US
dc.subjectStatisticsen_US
dc.subjectWater resourcesen_US
dc.subjectAdaptive Neuro-Fuzzy Inference System (ANFIS)en_US
dc.subjectApplied (CO)en_US
dc.subjectArtificial neural network (ANNs)en_US
dc.subjectcase studiesen_US
dc.subjectCross-validation methodsen_US
dc.subjectData setsen_US
dc.subjecthigh accuracyen_US
dc.subjectIn orderen_US
dc.subjectInput/output (I/O) dataen_US
dc.subjectSustainable useen_US
dc.subjectTime Seriesen_US
dc.subjectTime series forecastingen_US
dc.subjectTraining and testingen_US
dc.subjectTime series analysisen_US
dc.subjectartificial neural networken_US
dc.subjectbasin analysisen_US
dc.subjectforecasting methoden_US
dc.subjectfuzzy mathematicsen_US
dc.subjecthydrological modelingen_US
dc.subjectinput-output analysisen_US
dc.subjectnumerical modelen_US
dc.subjectperformance assessmenten_US
dc.subjecttime series analysisen_US
dc.subjectEurasiaen_US
dc.subjectMenderes Basinen_US
dc.subjectTurkeyen_US
dc.titleHydrological time-series modelling using an adaptive neuro-fuzzy inference systemen_US
dc.typeArticleen_US
dc.identifier.volume22en_US
dc.identifier.issue13en_US
dc.identifier.startpage2122
dc.identifier.startpage2122en_US
dc.identifier.endpage2132en_US
dc.authorid0000-0002-8010-9289-
dc.authorid0000-0001-8019-1430-
dc.identifier.doi10.1002/hyp.6812-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-46449123911en_US
dc.identifier.wosWOS:000257090200007en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

87
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

73
checked on Nov 21, 2024

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.