Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFirat, M.-
dc.contributor.authorYurdusev, M.A.-
dc.contributor.authorMermer, M.-
dc.date.accessioned2019-08-16T12:16:24Z-
dc.date.available2019-08-16T12:16:24Z-
dc.date.issued2008-
dc.identifier.issn1300-1884-
dc.identifier.urihttps://hdl.handle.net/11499/7138-
dc.description.abstractIn this study, an adaptive Neuro-Fuzzy inference system (ANFIS) is used to forecast monthly water use from several socio-economic and climatic factors, which affect water use. Totally 108 data sets are collected and data sets are divided into two subsets, training and testing. The models consisting of the combination of the independent variables are constructed and the best fit input structure is investigated. The performance of ANFIS models in training and testing sets are compared with the observations and the best fit model forecasting model is identified. For this purpose, some criteria of performance evaluation such as, Root Mean Square Error (RMSE), efficiency (E) and correlation coefficient (CORR) are calculated for all models. Then, the best fit models are also trained and tested by Multiple Regression (MR). The results of models are compared to get more reliable comparison. The results indicated that ANFIS can be applied successfully for monthly water demand forecasting.en_US
dc.language.isotren_US
dc.relation.ispartofJournal of the Faculty of Engineering and Architecture of Gazi Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANFISen_US
dc.subjectWater demand forecastingen_US
dc.subjectWater demand managementen_US
dc.subjectAdaptive Neuro-Fuzzy Inference System (ANFIS)en_US
dc.subjectBest fiten_US
dc.subjectBest-fit modelsen_US
dc.subjectClimatic factorsen_US
dc.subjectCorrelation coefficient (CC)en_US
dc.subjectData setsen_US
dc.subjectForecasting modelsen_US
dc.subjectIndependent variablesen_US
dc.subjectMultiple regressionsen_US
dc.subjectPerformance evaluation (PE)en_US
dc.subjectRoot mean-square error (RMSE)en_US
dc.subjectSocio economicen_US
dc.subjectTraining and testingen_US
dc.subjectWater demandsen_US
dc.subjectWater usesen_US
dc.subjectBiochemical oxygen demanden_US
dc.subjectCorrelation methodsen_US
dc.subjectFood processingen_US
dc.subjectForecastingen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy logicen_US
dc.subjectReusabilityen_US
dc.subjectFuzzy systemsen_US
dc.titleMonthly water demand forecasting by adaptive neuro-fuzzy inference system approachen_US
dc.typeArticleen_US
dc.identifier.volume23en_US
dc.identifier.issue2en_US
dc.identifier.startpage449en_US
dc.identifier.endpage457en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-47549096434en_US
dc.identifier.trdizinid77465en_US
dc.identifier.wosWOS:000273012500022en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1tr-
item.grantfulltextopen-
item.openairetypeArticle-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
7b0e583e-c034-4ece-b797-44b28b3f6e2f.pdf336.93 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 21, 2024

Page view(s)

46
checked on Aug 24, 2024

Download(s)

230
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.