Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7240
Title: On the instability intervals of the Mathieu-Hill operator
Authors: Kıraç, Alp Arslan
Keywords: Asymptotic formulas
Instability interval
Mathieu-Hill operator
Abstract: Consider the Mathieu-Hill operator Ly = -y + (2h cos 2x)y, < x < + } in L2(R), where h ? (R)\{0} . We obtain the precise asymptotic formulas for the widths ? k of the instability intervals of L. The formula states the isolated terms of arbitrary number in the asymptotics of the sequence ? k for large k and verifies the results of Harrell (Am J Math suppl:139-150, 1981) and Avron and Simon (Ann Phys 134:76-84, 1981). © 2007 Springer.
URI: https://hdl.handle.net/11499/7240
https://doi.org/10.1007/s11005-007-0215-6
ISSN: 0377-9017
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 22, 2024

Page view(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.