Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7273
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKızılkaya, Aydın-
dc.date.accessioned2019-08-16T12:19:03Z
dc.date.available2019-08-16T12:19:03Z
dc.date.issued2008-
dc.identifier.issn1051-2004-
dc.identifier.urihttps://hdl.handle.net/11499/7273-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2008.05.002-
dc.description.abstractThe Cramer-Rao lower bound (CRLB) that gives the minimal achievable variance/standard deviation for any unbiased estimator offers a useful tool for an assessment of the consistency of parameter estimation techniques. In this paper, a closed-form expression for the computation of the exact CRLB on unbiased estimates of the parameters of a two-dimensional (2-D) autoregressive moving average (ARMA) model with a nonsymmetric half-plane (NSHP) region of support is developed. The proposed formulation is mainly based on a matrix representation of 2-D real-valued discrete and homogeneous random field characterized by the NSHP ARMA model. Assuming that the random field is Gaussian, the covariance matrix of the NSHP ARMA random field is first expressed in terms of the model parameters. Then, using this matrix structure, a closed-form expression of the exact Fisher information matrix required for the CRLB computation of the NSHP ARMA model parameters is developed. Finally, the main formulas derived for the NSHP ARMA model are rearranged for its autoregressive and moving average counterparts, separately. Numerical simulations are included to demonstrate the behavior of the derived CRLB formulas. © 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofDigital Signal Processing: A Review Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutoregressive (AR) modelen_US
dc.subjectAutoregressive moving average (ARMA) modelen_US
dc.subjectCramer-Rao lower bound (CRLB)en_US
dc.subjectFisher information matrix (FIM)en_US
dc.subjectHomogeneous random fieldsen_US
dc.subjectMoving average (MA) modelen_US
dc.subjectNonsymmetric half-plane (NSHP)en_US
dc.subjectParameter estimationen_US
dc.subjectTwo-dimensional (2-D)en_US
dc.subjectCovariance matrixen_US
dc.subjectCramer-Rao boundsen_US
dc.subjectFisher information matrixen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectRandom processesen_US
dc.subjectAuto regressive modelsen_US
dc.subjectAutoregressive moving average modelen_US
dc.subjectCramer-rao lower bounden_US
dc.subjectMoving averagesen_US
dc.subjectNonsymmetric half planeen_US
dc.subjectRandom fieldsen_US
dc.subjectTwo Dimensional (2 D)en_US
dc.titleComputation of the exact Cramer-Rao lower bound for the parameters of a nonsymmetric half-plane 2-D ARMA modelen_US
dc.typeArticleen_US
dc.identifier.volume18en_US
dc.identifier.issue5en_US
dc.identifier.startpage835
dc.identifier.startpage835en_US
dc.identifier.endpage843en_US
dc.authorid0000-0001-8361-9738-
dc.identifier.doi10.1016/j.dsp.2008.05.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-47049094171en_US
dc.identifier.wosWOS:000258035400012en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 21, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.