Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7336
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMahdevari, S.-
dc.contributor.authorShahriar, K.-
dc.contributor.authorYagiz, Saffet-
dc.contributor.authorAkbarpour Shirazi, M.-
dc.date.accessioned2019-08-16T12:29:19Z-
dc.date.available2019-08-16T12:29:19Z-
dc.date.issued2014-
dc.identifier.issn1365-1609-
dc.identifier.urihttps://hdl.handle.net/11499/7336-
dc.identifier.urihttps://doi.org/10.1016/j.ijrmms.2014.09.012-
dc.description.abstractWith widespread increasing applications of mechanized tunneling in almost all ground conditions, prediction of tunnel boring machine (TBM) performance is required for time planning, cost control and choice of excavation method in order to make tunneling economical. Penetration rate is a principal measure of full-face TBM performance and is used to evaluate the feasibility of the machine and predict advance rate of excavation. This research aims at developing a regression model to predict penetration rate of TBM in hard rock conditions based on a new artificial intelligence (AI) algorithm namely support vector regression (SVR). For this purpose, the Queens Water Tunnel, in New York City, was selected as a case study to test the proposed model. In order to find out the optimum values of the parameters and prevent over-fitting, 80% of the total data were selected randomly for training set and the rest were kept for testing the model. According to the results, it can be said that the proposed model is a useful and reliable means to predict TBM penetration rate provided that a suitable dataset exists. From the prediction results of training and testing samples, the squared correlation coefficient (R2) between the observed and predicted values of the proposed model was obtained 0.99 and 0.95, respectively, which shows a high conformity between predicted and actual penetration rate. © 2014 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Rock Mechanics and Mining Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPenetration rateen_US
dc.subjectQueens water tunnelen_US
dc.subjectSVRen_US
dc.subjectTBM performanceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBoring machines (machine tools)en_US
dc.subjectExcavationen_US
dc.subjectForecastingen_US
dc.subjectHydraulic structuresen_US
dc.subjectRegression analysisen_US
dc.subjectTunneling (excavation)en_US
dc.subjectTunneling machinesen_US
dc.subjectTunnelsen_US
dc.subjectWater supply tunnelsen_US
dc.subjectPenetration ratesen_US
dc.subjectSquared correlation coefficientsen_US
dc.subjectSupport vector regression (SVR)en_US
dc.subjectSupport vector regression modelsen_US
dc.subjectTunnel boring machine(TBM)en_US
dc.subjectWater tunnelen_US
dc.subjectConstruction equipmenten_US
dc.subjectalgorithmen_US
dc.subjectartificial intelligenceen_US
dc.subjectpenetrationen_US
dc.subjectpredictionen_US
dc.subjectregression analysisen_US
dc.subjectrock mechanicsen_US
dc.subjectTBMen_US
dc.subjecttunnelingen_US
dc.titleA support vector regression model for predicting tunnel boring machine penetration ratesen_US
dc.typeArticleen_US
dc.identifier.volume72en_US
dc.identifier.startpage214-
dc.identifier.startpage214en_US
dc.identifier.endpage229en_US
dc.identifier.doi10.1016/j.ijrmms.2014.09.012-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84949115475en_US
dc.identifier.wosWOS:000345583900023en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

239
checked on Feb 8, 2025

WEB OF SCIENCETM
Citations

190
checked on Feb 9, 2025

Page view(s)

42
checked on Feb 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.