Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7362
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGöçeri, Evgin-
dc.contributor.authorGürcan, M.N.-
dc.contributor.authorDicle, O.-
dc.date.accessioned2019-08-16T12:29:23Z
dc.date.available2019-08-16T12:29:23Z
dc.date.issued2014-
dc.identifier.issn0010-4825-
dc.identifier.urihttps://hdl.handle.net/11499/7362-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2014.08.009-
dc.description.abstractAccurate liver segmentation is an important component of surgery planning for liver transplantation, which enables patients with liver disease a chance to survive. Spectral pre-saturation inversion recovery (SPIR) image sequences are useful for liver vessel segmentation because vascular structures in the liver are clearly visible in these sequences. Although level-set based segmentation techniques are frequently used in liver segmentation due to their flexibility to adapt to different problems by incorporating prior knowledge, the need to initialize the contours on each slice is a common drawback of such techniques. In this paper, we present a fully automated variational level set approach for liver segmentation from SPIR image sequences. Our approach is designed to be efficient while achieving high accuracy. The efficiency is achieved by (1) automatically defining an initial contour for each slice, and (2) automatically computing weight values of each term in the applied energy functional at each iteration during evolution. Automated detection and exclusion of spurious structures (e.g. cysts and other bright white regions on the skin) in the pre-processing stage increases the accuracy and robustness. We also present a novel approach to reduce computational cost by employing binary regularization of level set function. A signed pressure force function controls the evolution of the active contour. The method was applied to ten data sets. In each image, the performance of the algorithm was measured using the receiver operating characteristics method in terms of accuracy, sensitivity and specificity. The accuracy of the proposed method was 96%. Quantitative analyses of results indicate that the proposed method can accurately, efficiently and consistently segment liver images. © 2014 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputers in Biology and Medicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActive contouren_US
dc.subjectLiver segmentationen_US
dc.subjectSigned pressure force functionen_US
dc.subjectSPIRen_US
dc.subjectVariational level seten_US
dc.subjectComputer visionen_US
dc.subjectDrag reductionen_US
dc.subjectIterative methodsen_US
dc.subjectTransplantation (surgical)en_US
dc.subjectAutomationen_US
dc.subjectActive contoursen_US
dc.subjectSigned pressure forcesen_US
dc.subjectImage segmentationen_US
dc.subjectalgorithmen_US
dc.subjectarticleen_US
dc.subjectautomationen_US
dc.subjectcomputer assisted tomographyen_US
dc.subjectfull automated liver segmentationen_US
dc.subjecthepatobiliary parametersen_US
dc.subjecthumanen_US
dc.subjectimage reconstructionen_US
dc.subjectimaging and displayen_US
dc.subjectkidneyen_US
dc.subjectliver blood vesselen_US
dc.subjectliver cysten_US
dc.subjectliver transplantationen_US
dc.subjectliver weighten_US
dc.subjectmathematical parametersen_US
dc.subjectmeasurement accuracyen_US
dc.subjectpriority journalen_US
dc.subjectquantitative analysisen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsigned pressure forceen_US
dc.subjectspectral pre saturation inversion recoveryen_US
dc.subjectspleenen_US
dc.subjectstomachen_US
dc.subjectaccuracyen_US
dc.subjectArticleen_US
dc.subjectautomated liver segmentationen_US
dc.subjectdiscriminant analysisen_US
dc.subjectgallbladderen_US
dc.subjectimage analysisen_US
dc.subjectliveren_US
dc.subjectliver diseaseen_US
dc.subjectqualitative analysisen_US
dc.subjectreceiver operating characteristicen_US
dc.subjectspectral presaturation inversion recovery imageen_US
dc.subjectabdominal radiographyen_US
dc.subjectageden_US
dc.subjectanatomy and histologyen_US
dc.subjectfemaleen_US
dc.subjectimage processingen_US
dc.subjectmaleen_US
dc.subjectmiddle ageden_US
dc.subjectpathologyen_US
dc.subjectproceduresen_US
dc.subjectradiographyen_US
dc.subjectvery elderlyen_US
dc.subjectAgeden_US
dc.subjectAged, 80 and overen_US
dc.subjectAlgorithmsen_US
dc.subjectFemaleen_US
dc.subjectHumansen_US
dc.subjectImage Processing, Computer-Assisteden_US
dc.subjectLiveren_US
dc.subjectLiver Diseasesen_US
dc.subjectMaleen_US
dc.subjectMiddle Ageden_US
dc.subjectRadiography, Abdominalen_US
dc.subjectTomography, X-Ray Computeden_US
dc.titleFully automated liver segmentation from SPIR image seriesen_US
dc.typeArticleen_US
dc.identifier.volume53en_US
dc.identifier.startpage265
dc.identifier.startpage265en_US
dc.identifier.endpage278en_US
dc.authorid0000-0002-2329-4107-
dc.identifier.doi10.1016/j.compbiomed.2014.08.009-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.pmid25192606en_US
dc.identifier.scopus2-s2.0-84906900204en_US
dc.identifier.wosWOS:000343617000029en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

25
checked on Nov 21, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.