Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7422
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhasemi, E.-
dc.contributor.authorYagiz, S.-
dc.contributor.authorAtaei, M.-
dc.date.accessioned2019-08-16T12:29:32Z-
dc.date.available2019-08-16T12:29:32Z-
dc.date.issued2014-
dc.identifier.issn1435-9529-
dc.identifier.urihttps://hdl.handle.net/11499/7422-
dc.identifier.urihttps://doi.org/10.1007/s10064-013-0497-0-
dc.description.abstractPredicting the penetration rate of a tunnel boring machine (TBM) plays an important role in the economic and time planning of tunneling projects. In the past years, various empirical methods have been developed for the prediction of TBM penetration rates using traditional statistical analysis techniques. Soft computing techniques are now being used as an alternative statistical tool. In this study, a fuzzy logic model was developed to predict the penetration rate based on collected data from one hard rock TBM tunnel (the Queens Water Tunnel # 3, Stage 2) in New York City, USA. The model predicts the penetration rate of the TBM using rock properties such as uniaxial compressive strength, rock brittleness, distance between planes of weakness and the orientation of discontinuities in the rock mass. The results indicated that the fuzzy model can be used as a reliable predictor of TBM penetration rate for the studied tunneling project. The determination coefficient (R2), the variance account for and the root mean square error indices of the proposed fuzzy model are 0.8930, 89.06 and 0.13, respectively. © 2013, Springer-Verlag Berlin Heidelberg.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofBulletin of Engineering Geology and the Environmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy logicen_US
dc.subjectRate of penetration (ROP)en_US
dc.subjectRock propertiesen_US
dc.subjectTunnel boring machine (TBM)en_US
dc.subjectBoring machines (machine tools)en_US
dc.subjectCompressive strengthen_US
dc.subjectComputation theoryen_US
dc.subjectComputer circuitsen_US
dc.subjectConstruction equipmenten_US
dc.subjectForecastingen_US
dc.subjectFracture mechanicsen_US
dc.subjectMean square erroren_US
dc.subjectReconfigurable hardwareen_US
dc.subjectRocksen_US
dc.subjectSoft computingen_US
dc.subjectStatistical mechanicsen_US
dc.subjectTunneling machinesen_US
dc.subjectDetermination coefficientsen_US
dc.subjectRate of penetrationen_US
dc.subjectRoot mean square errorsen_US
dc.subjectSoftcomputing techniquesen_US
dc.subjectStatistical toolsen_US
dc.subjectTunnel boring machine(TBM)en_US
dc.subjectUniaxial compressive strengthen_US
dc.titlePredicting penetration rate of hard rock tunnel boring machine using fuzzy logicen_US
dc.typeArticleen_US
dc.identifier.volume73en_US
dc.identifier.issue1en_US
dc.identifier.startpage23
dc.identifier.startpage23en_US
dc.identifier.endpage35en_US
dc.identifier.doi10.1007/s10064-013-0497-0-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84930182131en_US
dc.identifier.wosWOS:000330952100003en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

103
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

88
checked on Nov 16, 2024

Page view(s)

30
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.