Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7548
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüner, Necdet-
dc.contributor.authorYaldir, A.-
dc.contributor.authorGündüz, Gürhan-
dc.contributor.authorÇomak, Emre-
dc.contributor.authorTokat, Sezai-
dc.contributor.authorİplikçi, Serdar-
dc.date.accessioned2019-08-16T12:30:20Z
dc.date.available2019-08-16T12:30:20Z
dc.date.issued2014-
dc.identifier.issn1785-8860-
dc.identifier.urihttps://hdl.handle.net/11499/7548-
dc.description.abstractThis paper presents a study on predicting academically at-risk engineering students at the early stage of their education. For this purpose, some soft computing tools namely support vectors machines and artificial neural networks have been employed. The study population included all students enrolled in Pamukkale University, Faculty of Engineering at 2008-2009 and 2009-2010 academic years as freshmen. The data are retrieved from various institutions and questionnaires conducted on the students. Each input data point is of 38-dimension, which includes demographic and academic information about the students, while the output based on the first-year GPA of the students falls into either at-risk or not. The results of the study have shown that either support vector machine or artificial neural network methods can be used to predict first-year performance of a student in a priori manner. Thus, a proper course load and graduation schedule can be transcribed for the student to manage their graduation in a way that potential dropout risks are reduced. Moreover, an input sensitivity analysis has been conducted to determine the importance of each input used in the study.en_US
dc.language.isoenen_US
dc.publisherBudapest Tech Polytechnical Institutionen_US
dc.relation.ispartofActa Polytechnica Hungaricaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAt-risk studentsen_US
dc.subjectLeast-square support vector classificationen_US
dc.subjectRadial basis functions neural networken_US
dc.subjectSupport vector classificationen_US
dc.titlePredicting academically at-risk engineering students: A soft computing applicationen_US
dc.typeArticleen_US
dc.identifier.volume11en_US
dc.identifier.issue5en_US
dc.identifier.startpage199
dc.identifier.startpage199en_US
dc.identifier.endpage216en_US
dc.authorid0000-0003-3338-7929-
dc.authorid0000-0003-0104-7022-
dc.authorid0000-0003-0193-8220-
dc.authorid0000-0003-3806-1442-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84901774956en_US
dc.identifier.wosWOS:000340689800012en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.dept09.01. Mathematics and Science Teaching-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 15, 2024

Page view(s)

66
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.