Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7631
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDell’Orco, M.-
dc.contributor.authorBaşkan, Ö.-
dc.contributor.authorMarinelli, M.-
dc.date.accessioned2019-08-16T12:30:56Z-
dc.date.available2019-08-16T12:30:56Z-
dc.date.issued2014-
dc.identifier.isbn21945357 (ISSN)-
dc.identifier.isbn9783319009292-
dc.identifier.urihttps://hdl.handle.net/11499/7631-
dc.identifier.urihttps://doi.org/10.1007/978-3-319-00930-8_29-
dc.description.abstractThis study proposed Artificial Bee Colony (ABC) algorithm for finding optimal setting of traffic signals in coordinated signalized networks for given fixed set of link flows. For optimizing traffic signal timings in coordinated signalized networks, ABC with TRANSYT-7F (ABCTRANS) model is developed. The ABC algorithm is a new population-based metaheuristic approach, and it is inspired by the foraging behavior of honeybee swarm. TRANSYT-7F traffic model is used to estimate total network performance index (PI). The ABCTRANS is tested on medium sized signalized road network. Results showed that the proposed model is slightly better in signal timing optimization in terms of final values of PI when it is compared with TRANSYT-7F in which Genetic Algorithm (GA) and Hillclimbing (HC) methods are exist. Results also showed that the ABCTRANS model improves the medium sized network’s PI by 2.4 and 2.7% when it is compared with GA and HC methods. © Springer International Publishing Switzerland 2014.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlgorithmsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectSocial networking (online)en_US
dc.subjectSoft computingen_US
dc.subjectTiming circuitsen_US
dc.subjectTraffic controlen_US
dc.subjectWorld Wide Weben_US
dc.subjectArtificial bee coloniesen_US
dc.subjectArtificial bee colony algorithms (ABC)en_US
dc.subjectForaging behaviorsen_US
dc.subjectMeta-heuristic approachen_US
dc.subjectOptimal settingen_US
dc.subjectPerformance indicesen_US
dc.subjectSignal timing optimizationen_US
dc.subjectTraffic signal timingsen_US
dc.subjectTraffic signalsen_US
dc.titleArtificial bee colony-based algorithm for optimising traffic signal timingsen_US
dc.typeConference Objecten_US
dc.identifier.volume223en_US
dc.identifier.startpage327
dc.identifier.startpage327en_US
dc.identifier.endpage337en_US
dc.identifier.doi10.1007/978-3-319-00930-8_29-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84925066311en_US
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 16, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.