Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7703
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, G.-
dc.contributor.authorAşcı, Mustafa-
dc.date.accessioned2019-08-16T12:31:28Z
dc.date.available2019-08-16T12:31:28Z
dc.date.issued2014-
dc.identifier.issn0972-0871-
dc.identifier.urihttps://hdl.handle.net/11499/7703-
dc.description.abstractRiordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper, we introduce the first kind of Padovan matrix and the second kind of Padovan matrix and we consider the factorizations of Pascal matrices involving the Padovan matrices. © 2014 Pushpa Publishing House, Allahabad, India.en_US
dc.language.isoenen_US
dc.publisherUniversity of Allahabaden_US
dc.relation.ispartofFar East Journal of Mathematical Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFactorizationen_US
dc.subjectFibonacci matrixen_US
dc.subjectPadovan matrixen_US
dc.subjectPascal matrixen_US
dc.subjectPell matrixen_US
dc.subjectRiordan groupen_US
dc.titleOn the factorizations of the pascal matrices via padovan matricesen_US
dc.typeArticleen_US
dc.identifier.volume86en_US
dc.identifier.issue2en_US
dc.identifier.startpage165
dc.identifier.startpage165en_US
dc.identifier.endpage181en_US
dc.authorid0000-0003-3355-0909-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84898849530en_US
dc.identifier.scopusqualityQ4-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

Page view(s)

30
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.