Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/7962
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karakaş, Özler | - |
dc.contributor.author | Tomasella, A. | - |
dc.date.accessioned | 2019-08-16T12:33:51Z | |
dc.date.available | 2019-08-16T12:33:51Z | |
dc.date.issued | 2013 | - |
dc.identifier.issn | 0933-5137 | - |
dc.identifier.uri | https://hdl.handle.net/11499/7962 | - |
dc.identifier.uri | https://doi.org/10.1002/mawe.201300025 | - |
dc.description.abstract | This study presents a model for estimating the fatigue life of magnesium and aluminium non-penetrated butt-welded joints using Artificial Neural Network (ANN). The input parameters for the network are stress concentration factor Kt and nominal stress amplitude sa,n. The output parameter is the endurable number of load cycles N. Fatigue data were collected from the literature from three different sources. The experimental tests, on which the fatigue data are based, were carried out at the Fraunhofer Institute for Structural Durability and System Reliability (LBF), Darmstadt - Germany. The results determined with use of artificial neural network for welded magnesium and aluminium joints are displayed in the same scatter bands of SN-lines. It is observed that the trained results are in good agreement with the tested data and artificial neural network is applicable for estimating the SN-lines for non-penetrated welded magnesium and aluminium joints under cyclic loading. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Materialwissenschaft und Werkstofftechnik | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural network approach | en_US |
dc.subject | Butt-welded joints | en_US |
dc.subject | Experimental test | en_US |
dc.subject | Fatigue life estimation | en_US |
dc.subject | Output parameters | en_US |
dc.subject | Stress concentration factors | en_US |
dc.subject | Structural durability | en_US |
dc.subject | System reliability | en_US |
dc.subject | Aluminum | en_US |
dc.subject | Durability | en_US |
dc.subject | Magnesium | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Stress concentration | en_US |
dc.subject | Welding | en_US |
dc.subject | Fatigue of materials | en_US |
dc.title | Fatigue life estimation of non-penetrated butt weldments in ligth metals by artificial neural network approach | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 44 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 847 | |
dc.identifier.startpage | 847 | en_US |
dc.identifier.endpage | 855 | en_US |
dc.identifier.doi | 10.1002/mawe.201300025 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-84886827466 | en_US |
dc.identifier.wos | WOS:000328135400006 | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.owner | Pamukkale University | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
crisitem.author.dept | 10.07. Mechanical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
6
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
6
checked on Nov 21, 2024
Page view(s)
48
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.