Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7962
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakaş, Özler-
dc.contributor.authorTomasella, A.-
dc.date.accessioned2019-08-16T12:33:51Z
dc.date.available2019-08-16T12:33:51Z
dc.date.issued2013-
dc.identifier.issn0933-5137-
dc.identifier.urihttps://hdl.handle.net/11499/7962-
dc.identifier.urihttps://doi.org/10.1002/mawe.201300025-
dc.description.abstractThis study presents a model for estimating the fatigue life of magnesium and aluminium non-penetrated butt-welded joints using Artificial Neural Network (ANN). The input parameters for the network are stress concentration factor Kt and nominal stress amplitude sa,n. The output parameter is the endurable number of load cycles N. Fatigue data were collected from the literature from three different sources. The experimental tests, on which the fatigue data are based, were carried out at the Fraunhofer Institute for Structural Durability and System Reliability (LBF), Darmstadt - Germany. The results determined with use of artificial neural network for welded magnesium and aluminium joints are displayed in the same scatter bands of SN-lines. It is observed that the trained results are in good agreement with the tested data and artificial neural network is applicable for estimating the SN-lines for non-penetrated welded magnesium and aluminium joints under cyclic loading. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.en_US
dc.language.isoenen_US
dc.relation.ispartofMaterialwissenschaft und Werkstofftechniken_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural network approachen_US
dc.subjectButt-welded jointsen_US
dc.subjectExperimental testen_US
dc.subjectFatigue life estimationen_US
dc.subjectOutput parametersen_US
dc.subjectStress concentration factorsen_US
dc.subjectStructural durabilityen_US
dc.subjectSystem reliabilityen_US
dc.subjectAluminumen_US
dc.subjectDurabilityen_US
dc.subjectMagnesiumen_US
dc.subjectNeural networksen_US
dc.subjectStress concentrationen_US
dc.subjectWeldingen_US
dc.subjectFatigue of materialsen_US
dc.titleFatigue life estimation of non-penetrated butt weldments in ligth metals by artificial neural network approachen_US
dc.typeArticleen_US
dc.identifier.volume44en_US
dc.identifier.issue10en_US
dc.identifier.startpage847
dc.identifier.startpage847en_US
dc.identifier.endpage855en_US
dc.identifier.doi10.1002/mawe.201300025-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84886827466en_US
dc.identifier.wosWOS:000328135400006en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 21, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.