Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAşcı, Mustafa-
dc.contributor.authorGurel, E.-
dc.date.accessioned2019-08-16T12:37:26Z
dc.date.available2019-08-16T12:37:26Z
dc.date.issued2013-
dc.identifier.issn0381-7032-
dc.identifier.urihttps://hdl.handle.net/11499/8235-
dc.description.abstractIn this study we define and study the Bivariate Gaussian Fibonacci and Bivariate Gaussian Lucas Polynomials. We give generating function, Binet formula, explicit formula and partial derivation of these polynomials. By defining these bivariate polynomials for special cases Fn(x, 1) is the Gaussian Fibonacci polynomials, Ln(x, 1) is the Gaussian Lucas polynomials, Fn(1, 1) is the Gaussian Fibonacci numbers and L n(1, 1) is the Gaussian Lucas numbers defined in [19].en_US
dc.language.isoenen_US
dc.publisherCharles Babbage Research Centreen_US
dc.relation.ispartofArs Combinatoriaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBivariate fibonacci polynomialsen_US
dc.subjectGaussian Fibonacci polynomialsen_US
dc.subjectGaussian Lucas Polynomialsen_US
dc.titleBivariate Gaussian Fibonacci and Lucas polynomialsen_US
dc.typeArticleen_US
dc.identifier.volume109en_US
dc.identifier.startpage461
dc.identifier.startpage461en_US
dc.identifier.endpage472en_US
dc.authorid0000-0003-3355-0909-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84902171302en_US
dc.identifier.wosWOS:000320210200035en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 21, 2024

Page view(s)

102
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.