Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8267
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMutlu, Özcan-
dc.contributor.authorPolat, Olcay-
dc.contributor.authorSupçiller, Aliye Ayça-
dc.date.accessioned2019-08-16T12:37:51Z
dc.date.available2019-08-16T12:37:51Z
dc.date.issued2013-
dc.identifier.issn0305-0548-
dc.identifier.urihttps://hdl.handle.net/11499/8267-
dc.identifier.urihttps://doi.org/10.1016/j.cor.2012.07.010-
dc.description.abstractIn this study, we consider the assembly line worker assignment and balancing problem of type-II (ALWABP-2). ALWABP-2 arises when task times differ depending on operator skills and concerns with the assignment of tasks and operators to stations in order to minimize the cycle time. We developed an iterative genetic algorithm (IGA) to solve this problem. In the IGA, three search approaches are adopted in order to obtain search diversity and efficiency: modified bisection search, genetic algorithm and iterated local search. When designing the IGA, all the parameters such as construction heuristics, genetic operators and local search operators are adapted specifically to the ALWABP-2. The performance of the proposed IGA is compared with heuristic and metaheuristic approaches on benchmark problem instances. Experimental results show that the proposed IGA is very effective and robust for a large set of benchmark problems. © 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofComputers and Operations Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenetic algorithmen_US
dc.subjectIterated local searchen_US
dc.subjectLine balancingen_US
dc.subjectModified bisection searchen_US
dc.subjectWorker assignmenten_US
dc.subjectAssembly-line workersen_US
dc.subjectBalancing problemsen_US
dc.subjectBench-mark problemsen_US
dc.subjectBenchmark-problem instancesen_US
dc.subjectBisection searchen_US
dc.subjectConstruction heuristicsen_US
dc.subjectCycle timeen_US
dc.subjectGenetic operatorsen_US
dc.subjectIterative genetic algorithmsen_US
dc.subjectLocal search operatorsen_US
dc.subjectMeta-heuristic approachen_US
dc.subjectOperator skillsen_US
dc.subjectAssemblyen_US
dc.subjectAssembly machinesen_US
dc.subjectBenchmarkingen_US
dc.subjectGenetic algorithmsen_US
dc.subjectProblem solvingen_US
dc.titleAn iterative genetic algorithm for the assembly line worker assignment and balancing problem of type-IIen_US
dc.typeArticleen_US
dc.identifier.volume40en_US
dc.identifier.issue1en_US
dc.identifier.startpage418
dc.identifier.startpage418en_US
dc.identifier.endpage426en_US
dc.authorid0000-0003-1553-151X-
dc.authorid0000-0003-2642-0233-
dc.authorid0000-0001-5234-8234-
dc.identifier.doi10.1016/j.cor.2012.07.010-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84866148241en_US
dc.identifier.wosWOS:000309623100038en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

94
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

77
checked on Nov 21, 2024

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.