Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8281
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAşçı, Mustafa-
dc.contributor.authorTasci, D.-
dc.contributor.authorTuglu, N.-
dc.date.accessioned2019-08-16T12:38:01Z-
dc.date.available2019-08-16T12:38:01Z-
dc.date.issued2013-
dc.identifier.issn0381-7032-
dc.identifier.urihttps://hdl.handle.net/11499/8281-
dc.description.abstractIn this study we define the generalized k-order Fibonacci matrix and the n x n generalized Pascal matrix Fn{GF) associated with generalized F-nomial coefficients. We find the inverse of generalized Pascal matrix F n(GF) associated with generalized F - nomial coefficients. In the last section we factorize this matrix via generalized k-order Fibonacci matrix and give illustrative examples for these factorizations. Copyright © 2013, Charles Babbage Research Centre.en_US
dc.language.isoenen_US
dc.relation.ispartofArs Combinatoriaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFactorizationsen_US
dc.subjectGeneralized F - nomialen_US
dc.subjectGeneralized k-order fibonaccien_US
dc.titleGeneralized F-nomial matrix and factorizationsen_US
dc.typeArticleen_US
dc.identifier.volume108en_US
dc.identifier.startpage81-
dc.identifier.startpage81en_US
dc.identifier.endpage95en_US
dc.authorid0000-0003-3355-0909-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84894151017en_US
dc.identifier.wosWOS:000314320100007en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.