Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8301
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurhan, Yıldıray-
dc.contributor.authorToprakçı, Ozan-
dc.date.accessioned2019-08-16T12:38:17Z
dc.date.available2019-08-16T12:38:17Z
dc.date.issued2013-
dc.identifier.issn0040-5175-
dc.identifier.urihttps://hdl.handle.net/11499/8301-
dc.identifier.urihttps://doi.org/10.1177/0040517512445334-
dc.description.abstractIn this study, an artificial neural network (ANN) model is presented in order to predict the tenacity and hairiness of carded cotton yarns. Fiber measurement values generated by using a high-volume instrument (HVI) and an advanced fiber information system (AFIS) were used in the ANN model as input parameters. The radial basis function neural network (RBFNN) was used as ANN structure. The best RBFNN model was determined by analyzing the effect of epochs and the number of neurons on prediction performance. By using this ANN structure, the comparison between the performance of predicting yarn properties from HVIs and from AFISs was carried out. In the study, four different yarn counts (Ne20, Ne24, Ne30, and Ne40) for 10 different blends were applied. Each yarn count was spun at 4.34?e twist factor. In this study, the model presented a good rate of accuracy for predicting yarn tenacity and hairiness by using HVI and AFIS fiber values. The study showed that there was no significant difference between the accuracy of predicting these yarn properties from HVI fiber measurement results and those from an AFIS by using the RBF. From the results, it was noted that the performance of predicting yarn hairiness was better than that of predicting yarn tenacity. Also, this study could provide researchers with exclusive information on how to select the most appropriate ANN architecture and how to evolve the model for testing. © 2013, SAGE Publications. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofTextile Research Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial neural networksen_US
dc.subjectfiber propertiesen_US
dc.subjectprediction modelsen_US
dc.subjectRadial basis functionen_US
dc.subjectyarn hairinessen_US
dc.subjectyarn tenacityen_US
dc.subjectAdvanced fiber information systemsen_US
dc.subjectArtificial neural network modelsen_US
dc.subjectCarded cottonen_US
dc.subjectFiber measurementen_US
dc.subjectFiber propertiesen_US
dc.subjectHigh-volume instrumentsen_US
dc.subjectInput parameteren_US
dc.subjectPrediction modelen_US
dc.subjectPrediction performanceen_US
dc.subjectRadial basis function neural networksen_US
dc.subjectRadial basis functionsen_US
dc.subjectYarn counten_US
dc.subjectYarn hairinessen_US
dc.subjectYarn propertyen_US
dc.subjectFibersen_US
dc.subjectForecastingen_US
dc.subjectInformation systemsen_US
dc.subjectNeural networksen_US
dc.subjectRadial basis function networksen_US
dc.subjectTenacityen_US
dc.subjectWoolen_US
dc.subjectSpinning (fibers)en_US
dc.titleComparison of high-volume instrument and advanced fiber information systems based on prediction performance of yarn properties using a radial basis function neural networken_US
dc.typeArticleen_US
dc.identifier.volume83en_US
dc.identifier.issue2en_US
dc.identifier.startpage130
dc.identifier.startpage130en_US
dc.identifier.endpage147en_US
dc.authorid0000-0001-7944-4269-
dc.identifier.doi10.1177/0040517512445334-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84871492115en_US
dc.identifier.wosWOS:000312707700003en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.06. Textile Engineering-
crisitem.author.dept10.06. Textile Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

16
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

11
checked on Nov 21, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.