Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8383
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSen, S.-
dc.contributor.authorSezer, E.A.-
dc.contributor.authorGokceoglu, C.-
dc.contributor.authorYağız, Saffet-
dc.date.accessioned2019-08-16T12:39:33Z
dc.date.available2019-08-16T12:39:33Z
dc.date.issued2012-
dc.identifier.issn1064-1246-
dc.identifier.urihttps://hdl.handle.net/11499/8383-
dc.identifier.urihttps://doi.org/10.3233/IFS-2012-0521-
dc.description.abstractSampling strategies which have very significant role on examining data characteristics (i.e. imbalanced, small, exhaustive) have been discussed in the literature for the last couple decades. In this study, the sampling problem encountered on small and continuous data sets is examined. Sampling with measured data by employing k-fold cross validation, and sampling with synthetic data generated by fuzzy c-means clustering are applied, and then the performances of genetic programming (GP) and adaptive neuro fuzzy inference system (ANFIS) on these data sets are discussed. Concluding remarks are that when the experimental results are considered, fuzzy c-means based synthetic sampling is more successful than k-fold cross validation while modeling small and continous data sets with ANFIS and GP, so it can be proposed for these type of data sets. Additionally, ANFIS shows slightly better performance than GP when sytnthetic data is employed, but GP is less sensitive to data set and produces ouputs that are narrower range than ANFIS's outputs while k-fold cross validation is employed. © 2012 - IOS Press and the authors. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Intelligent and Fuzzy Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadaptive neuro-fuzzy inference systemen_US
dc.subjectgenetic programmingen_US
dc.subjectSampling strategiesen_US
dc.subjectsmall and continuous dataen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectContinuous dataen_US
dc.subjectCross validationen_US
dc.subjectData characteristicsen_US
dc.subjectData setsen_US
dc.subjectFuzzy C meanen_US
dc.subjectFuzzy C means clusteringen_US
dc.subjectSampling problemsen_US
dc.subjectSynthetic dataen_US
dc.subjectGenetic programmingen_US
dc.subjectTracking (position)en_US
dc.subjectFuzzy systemsen_US
dc.titleOn sampling strategies for small and continuous data with the modeling of genetic programming and adaptive neuro-fuzzy inference systemen_US
dc.typeConference Objecten_US
dc.identifier.volume23en_US
dc.identifier.issue6en_US
dc.identifier.startpage297
dc.identifier.startpage297en_US
dc.identifier.endpage304en_US
dc.authorid0000-0002-7271-3136-
dc.identifier.doi10.3233/IFS-2012-0521-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84872313045en_US
dc.identifier.wosWOS:000311417100004en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 21, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.