Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/8383
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sen, S. | - |
dc.contributor.author | Sezer, E.A. | - |
dc.contributor.author | Gokceoglu, C. | - |
dc.contributor.author | Yağız, Saffet | - |
dc.date.accessioned | 2019-08-16T12:39:33Z | |
dc.date.available | 2019-08-16T12:39:33Z | |
dc.date.issued | 2012 | - |
dc.identifier.issn | 1064-1246 | - |
dc.identifier.uri | https://hdl.handle.net/11499/8383 | - |
dc.identifier.uri | https://doi.org/10.3233/IFS-2012-0521 | - |
dc.description.abstract | Sampling strategies which have very significant role on examining data characteristics (i.e. imbalanced, small, exhaustive) have been discussed in the literature for the last couple decades. In this study, the sampling problem encountered on small and continuous data sets is examined. Sampling with measured data by employing k-fold cross validation, and sampling with synthetic data generated by fuzzy c-means clustering are applied, and then the performances of genetic programming (GP) and adaptive neuro fuzzy inference system (ANFIS) on these data sets are discussed. Concluding remarks are that when the experimental results are considered, fuzzy c-means based synthetic sampling is more successful than k-fold cross validation while modeling small and continous data sets with ANFIS and GP, so it can be proposed for these type of data sets. Additionally, ANFIS shows slightly better performance than GP when sytnthetic data is employed, but GP is less sensitive to data set and produces ouputs that are narrower range than ANFIS's outputs while k-fold cross validation is employed. © 2012 - IOS Press and the authors. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of Intelligent and Fuzzy Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | adaptive neuro-fuzzy inference system | en_US |
dc.subject | genetic programming | en_US |
dc.subject | Sampling strategies | en_US |
dc.subject | small and continuous data | en_US |
dc.subject | Adaptive neuro-fuzzy inference system | en_US |
dc.subject | Continuous data | en_US |
dc.subject | Cross validation | en_US |
dc.subject | Data characteristics | en_US |
dc.subject | Data sets | en_US |
dc.subject | Fuzzy C mean | en_US |
dc.subject | Fuzzy C means clustering | en_US |
dc.subject | Sampling problems | en_US |
dc.subject | Synthetic data | en_US |
dc.subject | Genetic programming | en_US |
dc.subject | Tracking (position) | en_US |
dc.subject | Fuzzy systems | en_US |
dc.title | On sampling strategies for small and continuous data with the modeling of genetic programming and adaptive neuro-fuzzy inference system | en_US |
dc.type | Conference Object | en_US |
dc.identifier.volume | 23 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 297 | |
dc.identifier.startpage | 297 | en_US |
dc.identifier.endpage | 304 | en_US |
dc.authorid | 0000-0002-7271-3136 | - |
dc.identifier.doi | 10.3233/IFS-2012-0521 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-84872313045 | en_US |
dc.identifier.wos | WOS:000311417100004 | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.owner | Pamukkale University | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 10.08. Geological Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
13
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
13
checked on Nov 21, 2024
Page view(s)
48
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.