Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGöçeri, Evgin-
dc.contributor.authorUnlu, M.Z.-
dc.contributor.authorGuzelis, C.-
dc.contributor.authorDicle, O.-
dc.date.accessioned2019-08-16T12:39:48Z
dc.date.available2019-08-16T12:39:48Z
dc.date.issued2012-
dc.identifier.isbn9781467325837-
dc.identifier.urihttps://hdl.handle.net/11499/8400-
dc.identifier.urihttps://doi.org/10.1109/IPTA.2012.6469551-
dc.description.abstractA fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results. © 2012 IEEE.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGeometric active contoursen_US
dc.subjectLevel set methoden_US
dc.subjectLiver segmentationen_US
dc.subjectMRIen_US
dc.subjectAutomatic segmentationsen_US
dc.subjectCentral nervous systemsen_US
dc.subjectComputer assisted diagnosisen_US
dc.subjectLevel Set methoden_US
dc.subjectMagnetic resonance imagesen_US
dc.subjectSegmentation algorithmsen_US
dc.subjectIonizing radiationen_US
dc.subjectIterative methodsen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectNumerical methodsen_US
dc.subjectPartial differential equationsen_US
dc.subjectTissueen_US
dc.subjectImage segmentationen_US
dc.titleAn automatic level set based liver segmentation from MRI data setsen_US
dc.typeConference Objecten_US
dc.identifier.startpage192
dc.identifier.startpage192en_US
dc.identifier.endpage197en_US
dc.identifier.doi10.1109/IPTA.2012.6469551-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84875853652en_US
dc.identifier.wosWOS:000317076900034en_US
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
An Automatic Level Set Based Liver Segmentation from MRI Data Sets.pdf630.92 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

22
checked on Nov 21, 2024

Page view(s)

38
checked on Aug 24, 2024

Download(s)

20
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.