Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8433
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLee, G.-
dc.contributor.authorAşçı, Mustafa-
dc.date.accessioned2019-08-16T12:40:21Z-
dc.date.available2019-08-16T12:40:21Z-
dc.date.issued2012-
dc.identifier.issn1110-757X-
dc.identifier.urihttps://hdl.handle.net/11499/8433-
dc.identifier.urihttps://doi.org/10.1155/2012/264842-
dc.description.abstractRiordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called (p, q) -Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving (p, q) -Fibonacci polynomials. © 2012 GwangYeon Lee and Mustafa Asci.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSome properties of the (p, q) -fibonacci and (p, q) -lucas polynomialsen_US
dc.typeArticleen_US
dc.identifier.volume2012en_US
dc.identifier.doi10.1155/2012/264842-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84867808476en_US
dc.identifier.wosWOS:000308762700001en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
264842.pdf1.89 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

53
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

34
checked on Nov 21, 2024

Page view(s)

30
checked on Aug 24, 2024

Download(s)

76
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.