Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8487
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBozdemir, Mustafa-
dc.contributor.authorAykut, Š.-
dc.date.accessioned2019-08-16T12:41:11Z-
dc.date.available2019-08-16T12:41:11Z-
dc.date.issued2012-
dc.identifier.issn0268-3768-
dc.identifier.urihttps://hdl.handle.net/11499/8487-
dc.identifier.urihttps://doi.org/10.1007/s00170-011-3840-2-
dc.description.abstractCastamide is vulnerable to humidity up to 7%; therefore, it is important to know the effect of processing parameters on Castamide with and without humidity during machining. In this study, obtained quality of surface roughness of Castamide block samples prepared in wet and dry conditions, which is processed by using the same cutting parameters, were compared. Moreover, an artificial neural network (ANN) modeling technique was developed with the results obtained from the experiments. For the training of ANN model, material type, cutting speed, cutting rate, and depth of cutting parameters were used. In this way, average surface roughness values could be estimated without performing actual application for those values. Various experimental results for different material types with cutting parameters were evaluated by different ANN training algorithms. So, it aims to define the average surface roughness with minimum error by using the best reliable ANN training algorithm. Parameters as cutting speed (Vc), feed rate (f), diameter of cutting equipment, and depth of cut (ap) have been used as the input layers; average surface roughness has been also used as output layer. For testing data, root mean squared error, the fraction of variance (R2), and mean absolute percentage error were found to be 0.0681%, 0.9999%, and 0.1563%, respectively. With these results, we believe that the ANN can be used for prediction of average surface roughness. © Springer-Verlag London Limited 2011.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANNen_US
dc.subjectCastamideen_US
dc.subjectEnd millingen_US
dc.subjectOptimizationen_US
dc.subjectSurface roughnessen_US
dc.subjectAverage surface roughnessen_US
dc.subjectCutting parametersen_US
dc.subjectCutting rateen_US
dc.subjectCutting speeden_US
dc.subjectDepth of cuten_US
dc.subjectDepth of cuttingen_US
dc.subjectFeed-ratesen_US
dc.subjectInput layersen_US
dc.subjectMean absolute percentage erroren_US
dc.subjectModeling techniqueen_US
dc.subjectOutput layeren_US
dc.subjectProcessing parametersen_US
dc.subjectRoot mean squared errorsen_US
dc.subjectTesting dataen_US
dc.subjectTraining algorithmsen_US
dc.subjectWet and dryen_US
dc.subjectCuttingen_US
dc.subjectLearning algorithmsen_US
dc.subjectMilling (machining)en_US
dc.subjectNeural networksen_US
dc.subjectTurningen_US
dc.titleOptimization of surface roughness in end milling Castamideen_US
dc.typeArticleen_US
dc.identifier.volume62en_US
dc.identifier.issue5-8en_US
dc.identifier.startpage495-
dc.identifier.startpage495en_US
dc.identifier.endpage503en_US
dc.authorid0000-0002-9332-2054-
dc.identifier.doi10.1007/s00170-011-3840-2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84867143330en_US
dc.identifier.wosWOS:000308395000006en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept19.02. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknik Eğitim Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.