Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, X.-
dc.contributor.authorİplikçi, Serdar-
dc.contributor.authorChen, S.-
dc.contributor.authorWarwick, K.-
dc.date.accessioned2019-08-16T12:41:32Z
dc.date.available2019-08-16T12:41:32Z
dc.date.issued2012-
dc.identifier.isbn18650929 (ISSN)-
dc.identifier.isbn9783642318368-
dc.identifier.urihttps://hdl.handle.net/11499/8508-
dc.identifier.urihttps://doi.org/10.1007/978-3-642-31837-5_6-
dc.description.abstractA new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches. © 2012 Springer-Verlag.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHammerstein modelen_US
dc.subjectPID controlleren_US
dc.subjectsystem identificationen_US
dc.subjectB-spline neural networken_US
dc.subjectControl signalen_US
dc.subjectCorrection termsen_US
dc.subjectDe Boor Algorithmen_US
dc.subjectHammerstein systemen_US
dc.subjectInput/output datumen_US
dc.subjectJacobiansen_US
dc.subjectMulti-stepen_US
dc.subjectNonlinear static functionen_US
dc.subjectNumerical exampleen_US
dc.subjectPID controllersen_US
dc.subjectPID tuningen_US
dc.subjectRecursionsen_US
dc.subjectElectric control equipmenten_US
dc.subjectIdentification (control systems)en_US
dc.subjectIntelligent computingen_US
dc.subjectNeural networksen_US
dc.subjectNonlinear systemsen_US
dc.subjectProportional control systemsen_US
dc.titleB-spline neural networks based PID controller for Hammerstein systemsen_US
dc.typeConference Objecten_US
dc.identifier.volume304 CCISen_US
dc.identifier.startpage38
dc.identifier.startpage38en_US
dc.identifier.endpage46en_US
dc.identifier.doi10.1007/978-3-642-31837-5_6-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84864970940en_US
dc.identifier.wosWOS:000310938000006en_US
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.