Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞencan Şahin, A.-
dc.contributor.authorYazıcı, Hilmi-
dc.date.accessioned2019-08-16T12:42:29Z
dc.date.available2019-08-16T12:42:29Z
dc.date.issued2012-
dc.identifier.issn0377-0273-
dc.identifier.urihttps://hdl.handle.net/11499/8560-
dc.identifier.urihttps://doi.org/10.1016/j.jvolgeores.2012.04.020-
dc.description.abstractIn this study, energy and exergy analysis of the Afyon geothermal district heating system (AGDHS) in Afyon, Turkey using artificial neural network (ANN) and adaptive neuro-fuzzy (ANFIS) methods is carried out. Actual system data in the analysis of the AGDHS are used. The results of ANN are compared with ANFIS in which the same data sets are used. ANN model is slightly better than ANFIS in determining the energy and exergy rates. In addition, new formulations obtained from ANN are presented for the determination of the energy and exergy rates of the AGDHS. The R 2 -values obtained when unknown data were used in the networks were 0.999999847 and 0.99999997 for the energy and exergy rates respectively, which are very satisfactory. © 2012 Elsevier B.V.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Volcanology and Geothermal Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectDistrict heatingen_US
dc.subjectGeothermal energyen_US
dc.subjectNeuro-fuzzyen_US
dc.subjectThermodynamic analysisen_US
dc.subjectActual systemen_US
dc.subjectData setsen_US
dc.subjectEnergy and exergyen_US
dc.subjectEnergy and exergy analysisen_US
dc.subjectGeothermal district heating systemen_US
dc.subjectNeuro-Fuzzyen_US
dc.subjectThermo dynamic analysisen_US
dc.subjectThermodynamic evaluationen_US
dc.subjectExergyen_US
dc.subjectGeothermal heatingen_US
dc.subjectNeural networksen_US
dc.subjectThermoanalysisen_US
dc.subjectartificial neural networken_US
dc.subjectexergyen_US
dc.subjectgeothermal systemen_US
dc.subjectheatingen_US
dc.subjectthermodynamicsen_US
dc.subjectAfyonen_US
dc.subjectTurkeyen_US
dc.titleThermodynamic evaluation of the Afyon geothermal district heating system by using neural network and neuro-fuzzyen_US
dc.typeArticleen_US
dc.identifier.volume233-234en_US
dc.identifier.startpage65
dc.identifier.startpage65en_US
dc.identifier.endpage71en_US
dc.identifier.doi10.1016/j.jvolgeores.2012.04.020-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84861013022en_US
dc.identifier.wosWOS:000306617100006en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknik Eğitim Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Mar 29, 2025

WEB OF SCIENCETM
Citations

12
checked on Mar 31, 2025

Page view(s)

92
checked on Mar 4, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.