Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8609
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, Halil-
dc.date.accessioned2019-08-16T12:43:24Z-
dc.date.available2019-08-16T12:43:24Z-
dc.date.issued2012-
dc.identifier.issn1226-7988-
dc.identifier.urihttps://hdl.handle.net/11499/8609-
dc.identifier.urihttps://doi.org/10.1007/s12205-012-1076-9-
dc.description.abstractThis study proposes a Particle Swarm Optimization (PSO) algorithm to model the Rainfall-Intensity-Duration-Frequency (RIDF) relationship. The study is carried out under two scenarios. In scenario I, a data set with a length of 50 years is used. In Scenario II, the data set is extended to 68 years by adding the values of the recent 18 years. Scenario I is used for testing the robustness of the proposed PSO-RIDF model. The PSO-RIDF algorithm gives the same objective function value for different runs and this shows that the proposed algorithm is robust. Scenario II is used to investigate the influence of data length on model performance. It has been observed that the proposed PSO-RIDF model gives the same performance results as that of the Genetic Algorithm (GA) according to various error evaluation criteria. The PSO-RIDF model shows better performance than GA formulas when the number of parameters increases. It has also been observed that the length of the data set and the chosen formulation are influential on model performance. The weighting parameters of the RIDF model may be determined with PSO algorithm in one-stage instead of any statistical computations and/or trial-error procedure. © 2012 Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg.en_US
dc.language.isoenen_US
dc.relation.ispartofKSCE Journal of Civil Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectparameter estimationen_US
dc.subjectparticle swarm optimizationen_US
dc.subjectrainfall intensity-duration-frequencyen_US
dc.subjectData lengthen_US
dc.subjectData setsen_US
dc.subjectError evaluationen_US
dc.subjectModel performanceen_US
dc.subjectObjective function valuesen_US
dc.subjectParticle swarm optimization algorithmen_US
dc.subjectPSO algorithmsen_US
dc.subjectStatistical computationsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectParameter estimationen_US
dc.subjectRainen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.titleDetermining rainfall-intensity-duration-frequency relationship using Particle Swarm Optimizationen_US
dc.typeArticleen_US
dc.identifier.volume16en_US
dc.identifier.issue4en_US
dc.identifier.startpage667-
dc.identifier.startpage667en_US
dc.identifier.endpage675en_US
dc.authorid0000-0001-5346-5686-
dc.identifier.doi10.1007/s12205-012-1076-9-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84860538658en_US
dc.identifier.wosWOS:000303531000024en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 21, 2024

Page view(s)

20
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.