Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/8609
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karahan, Halil | - |
dc.date.accessioned | 2019-08-16T12:43:24Z | - |
dc.date.available | 2019-08-16T12:43:24Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 1226-7988 | - |
dc.identifier.uri | https://hdl.handle.net/11499/8609 | - |
dc.identifier.uri | https://doi.org/10.1007/s12205-012-1076-9 | - |
dc.description.abstract | This study proposes a Particle Swarm Optimization (PSO) algorithm to model the Rainfall-Intensity-Duration-Frequency (RIDF) relationship. The study is carried out under two scenarios. In scenario I, a data set with a length of 50 years is used. In Scenario II, the data set is extended to 68 years by adding the values of the recent 18 years. Scenario I is used for testing the robustness of the proposed PSO-RIDF model. The PSO-RIDF algorithm gives the same objective function value for different runs and this shows that the proposed algorithm is robust. Scenario II is used to investigate the influence of data length on model performance. It has been observed that the proposed PSO-RIDF model gives the same performance results as that of the Genetic Algorithm (GA) according to various error evaluation criteria. The PSO-RIDF model shows better performance than GA formulas when the number of parameters increases. It has also been observed that the length of the data set and the chosen formulation are influential on model performance. The weighting parameters of the RIDF model may be determined with PSO algorithm in one-stage instead of any statistical computations and/or trial-error procedure. © 2012 Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | KSCE Journal of Civil Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | parameter estimation | en_US |
dc.subject | particle swarm optimization | en_US |
dc.subject | rainfall intensity-duration-frequency | en_US |
dc.subject | Data length | en_US |
dc.subject | Data sets | en_US |
dc.subject | Error evaluation | en_US |
dc.subject | Model performance | en_US |
dc.subject | Objective function values | en_US |
dc.subject | Particle swarm optimization algorithm | en_US |
dc.subject | PSO algorithms | en_US |
dc.subject | Statistical computations | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Parameter estimation | en_US |
dc.subject | Rain | en_US |
dc.subject | Particle swarm optimization (PSO) | en_US |
dc.title | Determining rainfall-intensity-duration-frequency relationship using Particle Swarm Optimization | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 16 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 667 | - |
dc.identifier.startpage | 667 | en_US |
dc.identifier.endpage | 675 | en_US |
dc.authorid | 0000-0001-5346-5686 | - |
dc.identifier.doi | 10.1007/s12205-012-1076-9 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-84860538658 | en_US |
dc.identifier.wos | WOS:000303531000024 | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.owner | Pamukkale University | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
12
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
16
checked on Nov 21, 2024
Page view(s)
20
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.