Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/8632
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çomak, Emre | - |
dc.contributor.author | Arslan, A. | - |
dc.date.accessioned | 2019-08-16T12:43:54Z | |
dc.date.available | 2019-08-16T12:43:54Z | |
dc.date.issued | 2012 | - |
dc.identifier.issn | 0148-5598 | - |
dc.identifier.uri | https://hdl.handle.net/11499/8632 | - |
dc.identifier.uri | https://doi.org/10.1007/s10916-010-9500-5 | - |
dc.description.abstract | Classification success of Support Vector Machine (SVM) depends on the characteristic of given data set and some training parameters (C and ?). In literature, a few studies have been presented for regularization of these parameters which affects classification performance directly. This study proposes a new approach based on Renyi's entropy and Logistic regression methods for parameter regularization. Our regularization procedure runs at two steps. In the first step, optimal value of kernel parameter interval is found via Renyi's entropy method and optimal C value is found via logistic regression using exponential function in the next step. In addition to, this new decision support system is applied to biomedical research area via an application related to Doppler Heart Sounds (DHS). Experimental results show the efficiency of developed regularization procedure. © Springer Science+Business Media, LLC 2010. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of Medical Systems | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Decision support systems | en_US |
dc.subject | Doppler heart sounds | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Parameter regularization | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | algorithm | en_US |
dc.subject | aorta valve disease | en_US |
dc.subject | article | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | biomedical engineering | en_US |
dc.subject | classification | en_US |
dc.subject | decision support system | en_US |
dc.subject | Doppler echocardiography | en_US |
dc.subject | entropy | en_US |
dc.subject | Fourier transformation | en_US |
dc.subject | heart sound | en_US |
dc.subject | human | en_US |
dc.subject | least square support vector machine | en_US |
dc.subject | logistic regression analysis | en_US |
dc.subject | major clinical study | en_US |
dc.subject | medical technology | en_US |
dc.subject | mitral valve disease | en_US |
dc.subject | short time Fourier transformation | en_US |
dc.subject | signal processing | en_US |
dc.subject | support vector machine | en_US |
dc.subject | ultrasound transducer | en_US |
dc.subject | valvular heart disease | en_US |
dc.subject | computer assisted diagnosis | en_US |
dc.subject | echography | en_US |
dc.subject | methodology | en_US |
dc.subject | organization and management | en_US |
dc.subject | regression analysis | en_US |
dc.subject | Decision Support Systems, Clinical | en_US |
dc.subject | Echocardiography, Doppler | en_US |
dc.subject | Heart Valve Diseases | en_US |
dc.subject | Humans | en_US |
dc.subject | Image Interpretation, Computer-Assisted | en_US |
dc.subject | Least-Squares Analysis | en_US |
dc.subject | Support Vector Machines | en_US |
dc.title | A biomedical decision support system using LS-SVM classifier with an efficient and new parameter regularization procedure for diagnosis of heart valve diseases | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 36 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 549 | |
dc.identifier.startpage | 549 | en_US |
dc.identifier.endpage | 556 | en_US |
dc.authorid | 0000-0003-0104-7022 | - |
dc.identifier.doi | 10.1007/s10916-010-9500-5 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.pmid | 20703696 | en_US |
dc.identifier.scopus | 2-s2.0-84863207488 | en_US |
dc.identifier.wos | WOS:000303825500021 | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.owner | Pamukkale University | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
18
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
12
checked on Nov 15, 2024
Page view(s)
66
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.