Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8632
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇomak, Emre-
dc.contributor.authorArslan, A.-
dc.date.accessioned2019-08-16T12:43:54Z
dc.date.available2019-08-16T12:43:54Z
dc.date.issued2012-
dc.identifier.issn0148-5598-
dc.identifier.urihttps://hdl.handle.net/11499/8632-
dc.identifier.urihttps://doi.org/10.1007/s10916-010-9500-5-
dc.description.abstractClassification success of Support Vector Machine (SVM) depends on the characteristic of given data set and some training parameters (C and ?). In literature, a few studies have been presented for regularization of these parameters which affects classification performance directly. This study proposes a new approach based on Renyi's entropy and Logistic regression methods for parameter regularization. Our regularization procedure runs at two steps. In the first step, optimal value of kernel parameter interval is found via Renyi's entropy method and optimal C value is found via logistic regression using exponential function in the next step. In addition to, this new decision support system is applied to biomedical research area via an application related to Doppler Heart Sounds (DHS). Experimental results show the efficiency of developed regularization procedure. © Springer Science+Business Media, LLC 2010.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Medical Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecision support systemsen_US
dc.subjectDoppler heart soundsen_US
dc.subjectFeature extractionen_US
dc.subjectParameter regularizationen_US
dc.subjectSupport vector machinesen_US
dc.subjectalgorithmen_US
dc.subjectaorta valve diseaseen_US
dc.subjectarticleen_US
dc.subjectartificial neural networken_US
dc.subjectbiomedical engineeringen_US
dc.subjectclassificationen_US
dc.subjectdecision support systemen_US
dc.subjectDoppler echocardiographyen_US
dc.subjectentropyen_US
dc.subjectFourier transformationen_US
dc.subjectheart sounden_US
dc.subjecthumanen_US
dc.subjectleast square support vector machineen_US
dc.subjectlogistic regression analysisen_US
dc.subjectmajor clinical studyen_US
dc.subjectmedical technologyen_US
dc.subjectmitral valve diseaseen_US
dc.subjectshort time Fourier transformationen_US
dc.subjectsignal processingen_US
dc.subjectsupport vector machineen_US
dc.subjectultrasound transduceren_US
dc.subjectvalvular heart diseaseen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectechographyen_US
dc.subjectmethodologyen_US
dc.subjectorganization and managementen_US
dc.subjectregression analysisen_US
dc.subjectDecision Support Systems, Clinicalen_US
dc.subjectEchocardiography, Doppleren_US
dc.subjectHeart Valve Diseasesen_US
dc.subjectHumansen_US
dc.subjectImage Interpretation, Computer-Assisteden_US
dc.subjectLeast-Squares Analysisen_US
dc.subjectSupport Vector Machinesen_US
dc.titleA biomedical decision support system using LS-SVM classifier with an efficient and new parameter regularization procedure for diagnosis of heart valve diseasesen_US
dc.typeArticleen_US
dc.identifier.volume36en_US
dc.identifier.issue2en_US
dc.identifier.startpage549
dc.identifier.startpage549en_US
dc.identifier.endpage556en_US
dc.authorid0000-0003-0104-7022-
dc.identifier.doi10.1007/s10916-010-9500-5-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.pmid20703696en_US
dc.identifier.scopus2-s2.0-84863207488en_US
dc.identifier.wosWOS:000303825500021en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 15, 2024

Page view(s)

66
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.