Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/8864
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kalaycı, Can Berk | - |
dc.contributor.author | Ertenlice, O. | - |
dc.contributor.author | Akyer, Hasan | - |
dc.contributor.author | Aygören, Hakan | - |
dc.date.accessioned | 2019-08-16T12:57:01Z | |
dc.date.available | 2019-08-16T12:57:01Z | |
dc.date.issued | 2017 | - |
dc.identifier.issn | 0957-4174 | - |
dc.identifier.uri | https://hdl.handle.net/11499/8864 | - |
dc.identifier.uri | https://doi.org/10.1016/j.eswa.2017.05.018 | - |
dc.description.abstract | One of the most studied variant of portfolio optimization problems is with cardinality constraints that transform classical mean–variance model from a convex quadratic programming problem into a mixed integer quadratic programming problem which brings the problem to the class of NP-Complete problems. Therefore, the computational complexity is significantly increased since cardinality constraints have a direct influence on the portfolio size. In order to overcome arising computational difficulties, for solving this problem, researchers have focused on investigating efficient solution algorithms such as metaheuristic algorithms since exact techniques may be inadequate to find an optimal solution in a reasonable time and are computationally ineffective when applied to large-scale problems. In this paper, our purpose is to present an efficient solution approach based on an artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for solving cardinality constrained portfolio optimization problem. Computational results confirm the effectiveness of the solution methodology. © 2017 Elsevier Ltd | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial bee colony | en_US |
dc.subject | Cardinality constraints | en_US |
dc.subject | Infeasibility toleration | en_US |
dc.subject | Metaheuristics | en_US |
dc.subject | Portfolio optimization | en_US |
dc.subject | Swarm intelligence | en_US |
dc.subject | Computational complexity | en_US |
dc.subject | Computational efficiency | en_US |
dc.subject | Constrained optimization | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Financial data processing | en_US |
dc.subject | Integer programming | en_US |
dc.subject | Problem solving | en_US |
dc.subject | Quadratic programming | en_US |
dc.subject | Artificial bee colonies | en_US |
dc.subject | Meta heuristics | en_US |
dc.subject | Optimization | en_US |
dc.title | An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimization | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 85 | en_US |
dc.identifier.startpage | 61 | |
dc.identifier.startpage | 61 | en_US |
dc.identifier.endpage | 75 | en_US |
dc.authorid | 0000-0003-2355-7015 | - |
dc.identifier.doi | 10.1016/j.eswa.2017.05.018 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85019583626 | en_US |
dc.identifier.wos | WOS:000404702900006 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 10.09. Industrial Engineering | - |
crisitem.author.dept | 10.09. Industrial Engineering | - |
crisitem.author.dept | 08.04. Business Administration | - |
Appears in Collections: | İktisadi ve İdari Bilimler Fakültesi Koleksiyonu Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
68
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
48
checked on Oct 31, 2024
Page view(s)
54
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.