Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8864
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalaycı, Can Berk-
dc.contributor.authorErtenlice, O.-
dc.contributor.authorAkyer, Hasan-
dc.contributor.authorAygören, Hakan-
dc.date.accessioned2019-08-16T12:57:01Z
dc.date.available2019-08-16T12:57:01Z
dc.date.issued2017-
dc.identifier.issn0957-4174-
dc.identifier.urihttps://hdl.handle.net/11499/8864-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2017.05.018-
dc.description.abstractOne of the most studied variant of portfolio optimization problems is with cardinality constraints that transform classical mean–variance model from a convex quadratic programming problem into a mixed integer quadratic programming problem which brings the problem to the class of NP-Complete problems. Therefore, the computational complexity is significantly increased since cardinality constraints have a direct influence on the portfolio size. In order to overcome arising computational difficulties, for solving this problem, researchers have focused on investigating efficient solution algorithms such as metaheuristic algorithms since exact techniques may be inadequate to find an optimal solution in a reasonable time and are computationally ineffective when applied to large-scale problems. In this paper, our purpose is to present an efficient solution approach based on an artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for solving cardinality constrained portfolio optimization problem. Computational results confirm the effectiveness of the solution methodology. © 2017 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial bee colonyen_US
dc.subjectCardinality constraintsen_US
dc.subjectInfeasibility tolerationen_US
dc.subjectMetaheuristicsen_US
dc.subjectPortfolio optimizationen_US
dc.subjectSwarm intelligenceen_US
dc.subjectComputational complexityen_US
dc.subjectComputational efficiencyen_US
dc.subjectConstrained optimizationen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectFinancial data processingen_US
dc.subjectInteger programmingen_US
dc.subjectProblem solvingen_US
dc.subjectQuadratic programmingen_US
dc.subjectArtificial bee coloniesen_US
dc.subjectMeta heuristicsen_US
dc.subjectOptimizationen_US
dc.titleAn artificial bee colony algorithm with feasibility enforcement and infeasibility toleration procedures for cardinality constrained portfolio optimizationen_US
dc.typeArticleen_US
dc.identifier.volume85en_US
dc.identifier.startpage61
dc.identifier.startpage61en_US
dc.identifier.endpage75en_US
dc.authorid0000-0003-2355-7015-
dc.identifier.doi10.1016/j.eswa.2017.05.018-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85019583626en_US
dc.identifier.wosWOS:000404702900006en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept08.04. Business Administration-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

68
checked on Nov 10, 2024

WEB OF SCIENCETM
Citations

48
checked on Oct 31, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.