Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDikbaş, Fatih-
dc.date.accessioned2019-08-16T12:57:01Z
dc.date.available2019-08-16T12:57:01Z
dc.date.issued2017-
dc.identifier.issn1436-3240-
dc.identifier.urihttps://hdl.handle.net/11499/8865-
dc.identifier.urihttps://doi.org/10.1007/s00477-016-1356-x-
dc.description.abstractChanging climate and precipitation patterns make the estimation of precipitation, which exhibits two-dimensional and sometimes chaotic behavior, more challenging. In recent decades, numerous data-driven methods have been developed and applied to estimate precipitation; however, these methods suffer from the use of one-dimensional approaches, lack generality, require the use of neighboring stations and have low sensitivity. This paper aims to implement the first generally applicable, highly sensitive two-dimensional data-driven model of precipitation. This model, named frequency based imputation (FBI), relies on non-continuous monthly precipitation time series data. It requires no determination of input parameters and no data preprocessing, and it provides multiple estimations (from the most to the least probable) of each missing data unit utilizing the series itself. A total of 34,330 monthly total precipitation observations from 70 stations in 21 basins within Turkey were used to assess the success of the method by removing and estimating observation series in annual increments. Comparisons with the expectation maximization and multiple linear regression models illustrate that the FBI method is superior in its estimation of monthly precipitation. This paper also provides a link to the software code for the FBI method. © 2016, Springer-Verlag Berlin Heidelberg.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.relation.ispartofStochastic Environmental Research and Risk Assessmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData-driven modellingen_US
dc.subjectEstimation of missing dataen_US
dc.subjectFrequency based imputationen_US
dc.subjectPrecipitationen_US
dc.subjectEstimationen_US
dc.subjectLinear regressionen_US
dc.subjectMaximum principleen_US
dc.subjectPrecipitation (chemical)en_US
dc.subjectRegression analysisen_US
dc.subjectData driven modellingen_US
dc.subjectExpectation - maximizationsen_US
dc.subjectMissing dataen_US
dc.subjectMultiple linear regression modelsen_US
dc.subjectOne-dimensional approachen_US
dc.subjectPrecipitation patternsen_US
dc.subjectPrecipitation time seriesen_US
dc.subjectFrequency estimationen_US
dc.subjectclimate changeen_US
dc.subjectfrequency analysisen_US
dc.subjectmodelingen_US
dc.subjectone-dimensional modelingen_US
dc.subjectprecipitation (climatology)en_US
dc.subjectprecipitation assessmenten_US
dc.subjectsoftwareen_US
dc.subjecttime seriesen_US
dc.subjectTurkeyen_US
dc.titleFrequency based imputation of precipitationen_US
dc.typeArticleen_US
dc.identifier.volume31en_US
dc.identifier.issue9en_US
dc.identifier.startpage2415
dc.identifier.startpage2415en_US
dc.identifier.endpage2434en_US
dc.authorid0000-0001-5779-2801-
dc.identifier.doi10.1007/s00477-016-1356-x-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84995758174en_US
dc.identifier.wosWOS:000414782800017en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

7
checked on Apr 14, 2025

WEB OF SCIENCETM
Citations

6
checked on Apr 15, 2025

Page view(s)

100
checked on Apr 14, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.