Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8889
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKırkbaş, Ali-
dc.contributor.authorKızılkaya, Aydın-
dc.contributor.authorBoğar, Eşref-
dc.date.accessioned2019-08-16T12:57:05Z
dc.date.available2019-08-16T12:57:05Z
dc.date.issued2017-
dc.identifier.isbn9781509039821-
dc.identifier.urihttps://hdl.handle.net/11499/8889-
dc.identifier.urihttps://doi.org/10.1109/TSP.2017.8076045-
dc.description.abstractThe Adaptive Fourier Decomposition (AFD) is a novel signal decomposition algorithm that can describe an analytical signal through a linear combination of adaptive basis functions. At every decomposition step of the AFD, the basis function is determined by making a search in an over-complete dictionary. The decomposition continues until the difference between the energies of the original and reconstructed signals is to be less than a predefined tolerance. To reach the most accurate description of the signal, the AFD requires a large number of decomposition levels and a long duration because of using a sufficiently small tolerance and searching in a large dictionary. To make the AFD more practicable, we propose to combine it with Jaya algorithm for determining basis functions. The proposed approach does not require any dictionary and a tolerance for stopping decomposition. Furthermore, it enables to determine the decomposition level of the AFD automatically. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive Fourier decomposition (AFD)en_US
dc.subjectHeuristic optimizationen_US
dc.subjectJaya algorithmen_US
dc.subjectNonlinearen_US
dc.subjectNonstationaryen_US
dc.subjectSignal reconstructionen_US
dc.subjectFourier transformsen_US
dc.subjectFunctionsen_US
dc.subjectOptimizationen_US
dc.subjectAdaptive basis functionen_US
dc.subjectAdaptive fourier decompositionsen_US
dc.subjectLinear combinationsen_US
dc.subjectOver-complete dictionariesen_US
dc.subjectSignal decompositionen_US
dc.subjectSignal processingen_US
dc.titleOptimal basis pursuit based on jaya optimization for adaptive fourier decompositionen_US
dc.typeConference Objecten_US
dc.identifier.volume2017-Januaryen_US
dc.identifier.startpage538
dc.identifier.startpage538en_US
dc.identifier.endpage543en_US
dc.authorid0000-0002-6402-8470-
dc.authorid0000-0001-8361-9738-
dc.identifier.doi10.1109/TSP.2017.8076045-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85043262299en_US
dc.identifier.wosWOS:000425229000118en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 21, 2024

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.