Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/8889
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kırkbaş, Ali | - |
dc.contributor.author | Kızılkaya, Aydın | - |
dc.contributor.author | Boğar, Eşref | - |
dc.date.accessioned | 2019-08-16T12:57:05Z | |
dc.date.available | 2019-08-16T12:57:05Z | |
dc.date.issued | 2017 | - |
dc.identifier.isbn | 9781509039821 | - |
dc.identifier.uri | https://hdl.handle.net/11499/8889 | - |
dc.identifier.uri | https://doi.org/10.1109/TSP.2017.8076045 | - |
dc.description.abstract | The Adaptive Fourier Decomposition (AFD) is a novel signal decomposition algorithm that can describe an analytical signal through a linear combination of adaptive basis functions. At every decomposition step of the AFD, the basis function is determined by making a search in an over-complete dictionary. The decomposition continues until the difference between the energies of the original and reconstructed signals is to be less than a predefined tolerance. To reach the most accurate description of the signal, the AFD requires a large number of decomposition levels and a long duration because of using a sufficiently small tolerance and searching in a large dictionary. To make the AFD more practicable, we propose to combine it with Jaya algorithm for determining basis functions. The proposed approach does not require any dictionary and a tolerance for stopping decomposition. Furthermore, it enables to determine the decomposition level of the AFD automatically. © 2017 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive Fourier decomposition (AFD) | en_US |
dc.subject | Heuristic optimization | en_US |
dc.subject | Jaya algorithm | en_US |
dc.subject | Nonlinear | en_US |
dc.subject | Nonstationary | en_US |
dc.subject | Signal reconstruction | en_US |
dc.subject | Fourier transforms | en_US |
dc.subject | Functions | en_US |
dc.subject | Optimization | en_US |
dc.subject | Adaptive basis function | en_US |
dc.subject | Adaptive fourier decompositions | en_US |
dc.subject | Linear combinations | en_US |
dc.subject | Over-complete dictionaries | en_US |
dc.subject | Signal decomposition | en_US |
dc.subject | Signal processing | en_US |
dc.title | Optimal basis pursuit based on jaya optimization for adaptive fourier decomposition | en_US |
dc.type | Conference Object | en_US |
dc.identifier.volume | 2017-January | en_US |
dc.identifier.startpage | 538 | |
dc.identifier.startpage | 538 | en_US |
dc.identifier.endpage | 543 | en_US |
dc.authorid | 0000-0002-6402-8470 | - |
dc.authorid | 0000-0001-8361-9738 | - |
dc.identifier.doi | 10.1109/TSP.2017.8076045 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85043262299 | en_US |
dc.identifier.wos | WOS:000425229000118 | en_US |
dc.owner | Pamukkale University | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 10.04. Electrical-Electronics Engineering | - |
crisitem.author.dept | 10.04. Electrical-Electronics Engineering | - |
crisitem.author.dept | 20.03. Biomedical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.