Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/8889
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kırkbaş, Ali | - |
dc.contributor.author | Kızılkaya, Aydın | - |
dc.contributor.author | Boğar, Eşref | - |
dc.date.accessioned | 2019-08-16T12:57:05Z | |
dc.date.available | 2019-08-16T12:57:05Z | |
dc.date.issued | 2017 | - |
dc.identifier.isbn | 9781509039821 | - |
dc.identifier.uri | https://hdl.handle.net/11499/8889 | - |
dc.identifier.uri | https://doi.org/10.1109/TSP.2017.8076045 | - |
dc.description.abstract | The Adaptive Fourier Decomposition (AFD) is a novel signal decomposition algorithm that can describe an analytical signal through a linear combination of adaptive basis functions. At every decomposition step of the AFD, the basis function is determined by making a search in an over-complete dictionary. The decomposition continues until the difference between the energies of the original and reconstructed signals is to be less than a predefined tolerance. To reach the most accurate description of the signal, the AFD requires a large number of decomposition levels and a long duration because of using a sufficiently small tolerance and searching in a large dictionary. To make the AFD more practicable, we propose to combine it with Jaya algorithm for determining basis functions. The proposed approach does not require any dictionary and a tolerance for stopping decomposition. Furthermore, it enables to determine the decomposition level of the AFD automatically. © 2017 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive Fourier decomposition (AFD) | en_US |
dc.subject | Heuristic optimization | en_US |
dc.subject | Jaya algorithm | en_US |
dc.subject | Nonlinear | en_US |
dc.subject | Nonstationary | en_US |
dc.subject | Signal reconstruction | en_US |
dc.subject | Fourier transforms | en_US |
dc.subject | Functions | en_US |
dc.subject | Optimization | en_US |
dc.subject | Adaptive basis function | en_US |
dc.subject | Adaptive fourier decompositions | en_US |
dc.subject | Linear combinations | en_US |
dc.subject | Over-complete dictionaries | en_US |
dc.subject | Signal decomposition | en_US |
dc.subject | Signal processing | en_US |
dc.title | Optimal basis pursuit based on jaya optimization for adaptive fourier decomposition | en_US |
dc.type | Conference Object | en_US |
dc.identifier.volume | 2017-January | en_US |
dc.identifier.startpage | 538 | |
dc.identifier.startpage | 538 | en_US |
dc.identifier.endpage | 543 | en_US |
dc.authorid | 0000-0002-6402-8470 | - |
dc.authorid | 0000-0001-8361-9738 | - |
dc.identifier.doi | 10.1109/TSP.2017.8076045 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85043262299 | en_US |
dc.identifier.wos | WOS:000425229000118 | en_US |
dc.owner | Pamukkale University | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.grantfulltext | none | - |
crisitem.author.dept | 10.04. Electrical-Electronics Engineering | - |
crisitem.author.dept | 10.04. Electrical-Electronics Engineering | - |
crisitem.author.dept | 20.03. Biomedical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
5
checked on Oct 13, 2024
WEB OF SCIENCETM
Citations
5
checked on Nov 21, 2024
Page view(s)
62
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.