Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8932
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDikbaş, Fatih-
dc.date.accessioned2019-08-16T12:57:13Z
dc.date.available2019-08-16T12:57:13Z
dc.date.issued2017-
dc.identifier.issn0899-8418-
dc.identifier.urihttps://hdl.handle.net/11499/8932-
dc.identifier.urihttps://doi.org/10.1002/joc.4998-
dc.description.abstractThe widely used Pearson's correlation coefficient calculated for assessing the linear relationship between two variables might produce misleading results especially in the comparison of periodic variables. A single correlation coefficient provides a measure of the overall dependence structure and generally might not be sufficient for assessing local differences between the variables (e.g. associations between each individual year might vary in hydrologic series). The reason for this deficiency is the consideration of the averages of the whole series while ignoring the variations of the local averages (e.g. annual averages or long year averages of months) throughout the observations. This study presents a two-dimensional horizontal (row wise) and vertical (column wise) correlation calculation approach where the compared series are considered as two-dimensional matrices in which each row represents a sub-period (e.g. one calendar year of the precipitation data) of the investigated time series data. The method applies a normalization procedure by considering the averages of all rows (namely local averages) for calculating the horizontal correlation and the averages of all columns for calculating the vertical correlation instead of considering the averages of the whole matrices. This enables a separate determination of the degree of relationships between the rows and columns of the compared data matrices by using the horizontal and vertical variance and covariance values that constitute the base of the two-dimensional correlation. The method is applied on 14 different linearly varying hypothetical matrices, 6 matrices for testing the influence of seasonal and inter-annual variations and the monthly total precipitation records of 6 stations in southwest Turkey. The results have shown that the developed correlation approach assesses the two-dimensional behaviour of time series data like precipitation and provides a measure which enables separate assessment of the contributions from the seasonal cycle vs. inter-annual variability in the association between two time series. © 2017 Royal Meteorological Societyen_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.relation.ispartofInternational Journal of Climatologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcorrelationen_US
dc.subjectmonthly total precipitation dataen_US
dc.subjecttime series analysisen_US
dc.subjecttwo-dimensional correlationen_US
dc.subjecttwo-dimensional covarianceen_US
dc.subjecttwo-dimensional varianceen_US
dc.subjectCorrelation methodsen_US
dc.subjectMatrix algebraen_US
dc.subjectCalculation approachesen_US
dc.subjectCorrelation coefficienten_US
dc.subjectDependence structuresen_US
dc.subjectInterannual variabilityen_US
dc.subjectPearson's correlation coefficientsen_US
dc.subjectTotal precipitationen_US
dc.subjectTwo-dimensional correlationen_US
dc.subjectTwo-dimensional varianceen_US
dc.subjectTime series analysisen_US
dc.subjectcovariance analysisen_US
dc.subjectprecipitation assessmenten_US
dc.subjecttemporal variationen_US
dc.subjecttwo-dimensional modelingen_US
dc.subjectTurkeyen_US
dc.titleA novel two-dimensional correlation coefficient for assessing associations in time series dataen_US
dc.typeArticleen_US
dc.identifier.volume37en_US
dc.identifier.issue11en_US
dc.identifier.startpage4065
dc.identifier.startpage4065en_US
dc.identifier.endpage4076en_US
dc.authorid0000-0001-5779-2801-
dc.identifier.doi10.1002/joc.4998-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85028591134en_US
dc.identifier.wosWOS:000409036800007en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Jan 25, 2025

WEB OF SCIENCETM
Citations

23
checked on Apr 2, 2025

Page view(s)

102
checked on Mar 4, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.