Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8953
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T12:57:20Z
dc.date.available2019-08-16T12:57:20Z
dc.date.issued2017-
dc.identifier.issn2168-2216-
dc.identifier.urihttps://hdl.handle.net/11499/8953-
dc.identifier.urihttps://doi.org/10.1109/TSMC.2017.2662325-
dc.description.abstractIn this paper, an affine Takagi-Sugeno (TS) fuzzy modeling-based observer and controller are proposed for the estimation and control of a chaotic Hindmarsh-Rose (HR) neuronal model. The main contributions are given as follows. 1) First, an affine TS fuzzy model of the HR chaotic neuronal model is constructed using sector nonlinearity-based approach. 2) Based on the constructed TS fuzzy model, a TS fuzzy observer is designed for simultaneous state and parameter estimation of HR neuronal model for unmeasurable state and parameters. 3) In the same way, a novel affine TS fuzzy model-based output feedback control law is designed with observed state and parameters where the exponential stability of the designs are guaranteed by Lyapunov approach. 4) Finally, numerical simulations are conducted to illustrate the observation and stimulation with regular and fast spiking trains and annihilation of the membrane potential. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Systems, Man, and Cybernetics: Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChaosen_US
dc.subjectHindmarsh-Rose (HR) neuronal modelen_US
dc.subjectobserver-based controlen_US
dc.subjectsimultaneous state and parameter estimationen_US
dc.subjectstabilityen_US
dc.subjectTakagi-Sugeno (TS) fuzzy modeling and controlen_US
dc.subjectChaos theoryen_US
dc.subjectConvergence of numerical methodsen_US
dc.subjectFeedback controlen_US
dc.subjectNeuronsen_US
dc.subjectAffine T-S fuzzy modelsen_US
dc.subjectHindmarsh-Rose neuronal modelen_US
dc.subjectNeuronal modelen_US
dc.subjectObserver based controlen_US
dc.subjectOutput feedback controlsen_US
dc.subjectSector nonlinearityen_US
dc.subjectSimultaneous state and parameter estimationen_US
dc.subjectTakagi-sugeno fuzzy modelsen_US
dc.subjectParameter estimationen_US
dc.titleAffine TS Fuzzy Model-Based Estimation and Control of Hindmarsh-Rose Neuronal Modelen_US
dc.typeArticleen_US
dc.identifier.volume47en_US
dc.identifier.issue8en_US
dc.identifier.startpage2342
dc.identifier.startpage2342en_US
dc.identifier.endpage2350en_US
dc.authorid0000-0002-9581-2794-
dc.identifier.doi10.1109/TSMC.2017.2662325-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85029212612en_US
dc.identifier.wosWOS:000411096800049en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

18
checked on Nov 21, 2024

Page view(s)

58
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.