Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9055
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAşçı, Mustafa-
dc.contributor.authorGürel, Eşref-
dc.date.accessioned2019-08-16T12:58:06Z-
dc.date.available2019-08-16T12:58:06Z-
dc.date.issued2017-
dc.identifier.issn0381-7032-
dc.identifier.urihttps://hdl.handle.net/11499/9055-
dc.description.abstractIn this paper we define and study the Gaussian Fibonacci and Gaussian Lucas p-numbers. We give generating functions, Binet formulas, explicit formulas, matrix representations and sums of Gaussian Fibonacci p-numbers by matrix methods . For p = 1 these Gaussian Fibonacci and Gaussian Lucas p-numbers reduce to the Gaussian Fibonacci and the Gaussian Lucas numbers. © Copyright 2017, Charles Babbage Research Centre All rights reserved.en_US
dc.language.isoenen_US
dc.publisherCharles Babbage Research Centreen_US
dc.relation.ispartofArs Combinatoriaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFibonacci numbersen_US
dc.subjectGaussian Fibonacci numbersen_US
dc.subjectGaussian Fibonacci p-numbersen_US
dc.subjectGaussian Lucas p-numbersen_US
dc.titleGaussian Fibonacci and Gaussian Lucas p-numbersen_US
dc.typeArticleen_US
dc.identifier.volume132en_US
dc.identifier.startpage389en_US
dc.identifier.endpage402en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85031322269en_US
dc.identifier.wosWOS:000398333500032en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.