Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9102
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArmaghani, D.J.-
dc.contributor.authorMohamad, E.T.-
dc.contributor.authorNarayanasamy, M.S.-
dc.contributor.authorNarita, N.-
dc.contributor.authorYağız, Saffet-
dc.date.accessioned2019-08-16T12:58:20Z
dc.date.available2019-08-16T12:58:20Z
dc.date.issued2017-
dc.identifier.issn0886-7798-
dc.identifier.urihttps://hdl.handle.net/11499/9102-
dc.identifier.urihttps://doi.org/10.1016/j.tust.2016.12.009-
dc.description.abstractThe aim of this research is to develop new intelligent prediction models for estimating the tunnel boring machine performance (TBM) by means of the rate pf penetration (PR). To obtain this aim, the Pahang-Selangor Raw Water Transfer (PSRWT) tunnel in Malaysia was investigated and the data collected along the tunnel and generated in the laboratory via rock tests to be used for the proposed models. In order to develop relevant models, rock properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock quality designation (RQD), rock mass rating (RMR), weathering zone (WZ), and also machine parameters including thrust force (TF) and revolution per minute (RPM) were obtained and then, the dataset composed of both rock and machine parameters were established. After that, using the established database consisting of 1286 datasets, two hybrid intelligent systems namely particle swarm optimization (PSO)-artificial neural network (ANN) and imperialism competitive algorithm (ICA)-ANN and also simple ANN model were developed for predicting the TBM penetration rate. Further, developed models were compared and the best model was chosen among them. To compare the obtained results from the models, several performance indices i.e. coefficient of determination (R2), root mean square error (RMSE) and variance account for (VAF) were computed. It is found that the hybrid models including ICA-ANN and PSO-ANN having determination coefficients of 0.912 and 0.905 respectively for testing data as that of the simple ANN model are 0.666. More, the RMSE (0.034; 0.035) and VAF (90.338; 91.194) of hybrid models are also higher than these of simple ANN model (0.071; 66.148) respectively. Concluding remark is that the hybrid intelligent models are superior in comparison with simple ANN technique. © 2016 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofTunnelling and Underground Space Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectImperialism competitive algorithmen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectPenetration rateen_US
dc.subjectTunnel boring machineen_US
dc.subjectBoring machines (machine tools)en_US
dc.subjectCompressive strengthen_US
dc.subjectConstruction equipmenten_US
dc.subjectForecastingen_US
dc.subjectIntelligent systemsen_US
dc.subjectMean square erroren_US
dc.subjectNeural networksen_US
dc.subjectRock mechanicsen_US
dc.subjectRocksen_US
dc.subjectTensile strengthen_US
dc.subjectTunneling machinesen_US
dc.subjectWeatheringen_US
dc.subjectBrazilian tensile strengthsen_US
dc.subjectCoefficient of determinationen_US
dc.subjectCompetitive algorithmsen_US
dc.subjectDetermination coefficientsen_US
dc.subjectIntelligent prediction modelen_US
dc.subjectPenetration ratesen_US
dc.subjectTunnel boring machinesen_US
dc.subjectUniaxial compressive strengthen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectalgorithmen_US
dc.subjectartificial neural networken_US
dc.subjecthard rocken_US
dc.subjectnumerical modelen_US
dc.subjectoptimizationen_US
dc.subjectpenetrationen_US
dc.subjectpredictionen_US
dc.subjectTBMen_US
dc.subjectMalaysiaen_US
dc.titleDevelopment of hybrid intelligent models for predicting TBM penetration rate in hard rock conditionen_US
dc.typeArticleen_US
dc.identifier.volume63en_US
dc.identifier.startpage29
dc.identifier.startpage29en_US
dc.identifier.endpage43en_US
dc.authorid0000-0002-7271-3136-
dc.identifier.doi10.1016/j.tust.2016.12.009-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85006990022en_US
dc.identifier.wosWOS:000394636200003en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

345
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

306
checked on Nov 21, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.