Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9210
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKızılkaya, Aydın-
dc.contributor.authorElbi, M.D.-
dc.date.accessioned2019-08-16T12:58:57Z-
dc.date.available2019-08-16T12:58:57Z-
dc.date.issued2017-
dc.identifier.issn0045-7906-
dc.identifier.urihttps://hdl.handle.net/11499/9210-
dc.identifier.urihttps://doi.org/10.1016/j.compeleceng.2016.12.006-
dc.description.abstractEmpirical mode decomposition (EMD) is a tool developed for analyzing nonlinear and non-stationary signals. It is capable of splitting any signal into a set of oscillation modes known as intrinsic mode functions and a residual function. Although the EMD satisfies the perfect signal reconstruction property by superimposing all the oscillation modes, it is not based on any optimality criterion. The lack of optimality limits the signal recovery performance of the EMD in the presence of disturbances such as noise and interference. In this paper, we propose a new algorithm, termed, time-varying weighted EMD, which gives the best estimate of a given signal in the minimum mean-square error sense. The main idea of the proposed algorithm is to reconstruct the original signal through the EMD followed by time-varying weightings of the oscillation modes. Simulations including two real-life signals are performed to show the superiority of the proposed algorithm. © 2016 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputers and Electrical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeterministic regressionen_US
dc.subjectEmpirical mode decomposition (EMD)en_US
dc.subjectInterference rejectionen_US
dc.subjectMinimum mean-square error (MMSE)en_US
dc.subjectOrthonormal basis functionen_US
dc.subjectSignal reconstructionen_US
dc.subjectFunctionsen_US
dc.subjectMean square erroren_US
dc.subjectSignal analysisen_US
dc.subjectSignal processingen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectMinimum mean square errors (MMSE)en_US
dc.subjectOrthonormal basis functionsen_US
dc.subjectSignal interferenceen_US
dc.titleOptimal signal reconstruction based on time-varying weighted empirical mode decompositionen_US
dc.typeArticleen_US
dc.identifier.volume57en_US
dc.identifier.startpage28-
dc.identifier.startpage28en_US
dc.identifier.endpage42en_US
dc.authorid0000-0001-8361-9738-
dc.identifier.doi10.1016/j.compeleceng.2016.12.006-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85003816190en_US
dc.identifier.wosWOS:000394627900003en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 21, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.