Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9311
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhandelwal, M.-
dc.contributor.authorShirani Faradonbeh, R.-
dc.contributor.authorMonjezi, M.-
dc.contributor.authorArmaghani, D.J.-
dc.contributor.authorMajid, M.Z.B.A.-
dc.contributor.authorYağız, Saffet-
dc.date.accessioned2019-08-16T12:59:43Z
dc.date.available2019-08-16T12:59:43Z
dc.date.issued2017-
dc.identifier.issn0177-0667-
dc.identifier.urihttps://hdl.handle.net/11499/9311-
dc.identifier.urihttps://doi.org/10.1007/s00366-016-0452-3-
dc.description.abstractBrittleness of rock is one of the most critical features for design of underground excavation project. Therefore, proper assessing of rock brittleness can be very useful for designers and evaluators of geotechnical applications. In this study, feasibility of genetic programming (GP) model and non-linear multiple regression (NLMR) in predicting brittleness of intact rocks is examined. For this purpose, a dataset developed by conducting various rock tests including uniaxial compressive strength, Brazilian tensile strength, unit weight and brittleness via punch penetration on rock samples gathered from 48 tunnels projects around the world is utilized herein. Considering multiple inputs, several GP models were constructed to estimate brittleness index of the rock and finally, the best GP model was selected. Note that, GP can make an equation for predicting output of the system using model inputs. To show applicability of the developed GP model, non-linear multiple regression (NLMR) was also applied and developed. Considering some model performance indices, performance prediction of the GP and NLMR models were evaluated and it was found that the GP model is superior to NLMR one. Based on coefficient of determination (R2) of testing datasets, by proposing GP model, it can be improved from 0.882 (obtained by NLMR model) to 0.904. It is worth mentioning that the proposed predictive models in this study should be planned and used for the similar types of rock and the established inputs ranges. © 2016, Springer-Verlag London.en_US
dc.language.isoenen_US
dc.publisherSpringer Londonen_US
dc.relation.ispartofEngineering with Computersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBrittlenessen_US
dc.subjectGenetic programmingen_US
dc.subjectNon-linear multiple regressionen_US
dc.subjectCompressive strengthen_US
dc.subjectExcavationen_US
dc.subjectForecastingen_US
dc.subjectFracture mechanicsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectPlasticityen_US
dc.subjectRegression analysisen_US
dc.subjectRocksen_US
dc.subjectStatistical testsen_US
dc.subjectTensile strengthen_US
dc.subjectBrazilian tensile strengthsen_US
dc.subjectBrittleness indexen_US
dc.subjectCoefficient of determinationen_US
dc.subjectGeotechnical applicationen_US
dc.subjectNon linearen_US
dc.subjectPerformance predictionen_US
dc.subjectUnderground excavationen_US
dc.subjectUniaxial compressive strengthen_US
dc.titleFunction development for appraising brittleness of intact rocks using genetic programming and non-linear multiple regression modelsen_US
dc.typeArticleen_US
dc.identifier.volume33en_US
dc.identifier.issue1en_US
dc.identifier.startpage13
dc.identifier.startpage13en_US
dc.identifier.endpage21en_US
dc.authorid0000-0002-7271-3136-
dc.identifier.doi10.1007/s00366-016-0452-3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84965010968en_US
dc.identifier.wosWOS:000392140600002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

69
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

63
checked on Nov 21, 2024

Page view(s)

44
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.