Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9516
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇomak, Emre-
dc.date.accessioned2019-08-16T13:02:20Z
dc.date.available2019-08-16T13:02:20Z
dc.date.issued2016-
dc.identifier.issn0941-0643-
dc.identifier.urihttps://hdl.handle.net/11499/9516-
dc.identifier.urihttps://doi.org/10.1007/s00521-015-1941-9-
dc.description.abstractAn algorithm proposed using Renyi entropy clustering to improve the searching ability of traditional particle swarm optimization (PSO) is introduced in this study. Modified PSO consists of two steps. In the first step, particles in initial population are sorted according to Renyi entropy clustering method, and in the second step, some particles are removed from population and some new particles are added instead of them based on the sorted list. Thus, a reliable new initial population is created. When using sorted list from first to last with decreasing inertia weight parameter, or from last to first with increasing inertia weight parameter, a little improved search performances have been observed on three commonly used benchmark functions. However, in other two combinations of the proposed algorithm (from last to first with decreasing inertia weight and from first to last with increasing inertia weight), little worse optimization performances than traditional PSO have been noted. These four types of the proposed algorithm were run with different exchanging rate values. Thus, the representation ability of Renyi entropy clustering on initial population and the effect of organizing inertia weight parameter were evaluated together. Experimental results which were surveyed at different exchanging rate values showed the efficiency of such evaluation. © 2015, The Natural Computing Applications Forum.en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag London Ltden_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEntropyen_US
dc.subjectEvolutionary computationsen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectAlgorithmsen_US
dc.subjectClustering algorithmsen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectBenchmark functionsen_US
dc.subjectClustering methodsen_US
dc.subjectInertia weighten_US
dc.subjectInitial populationen_US
dc.subjectModified particle swarm optimization algorithmsen_US
dc.subjectRenyi entropyen_US
dc.subjectSearch performanceen_US
dc.subjectSearching abilityen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.titleA modified particle swarm optimization algorithm using Renyi entropy-based clusteringen_US
dc.typeArticleen_US
dc.identifier.volume27en_US
dc.identifier.issue5en_US
dc.identifier.startpage1381
dc.identifier.startpage1381en_US
dc.identifier.endpage1390en_US
dc.identifier.doi10.1007/s00521-015-1941-9-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84931077551en_US
dc.identifier.wosWOS:000378152800023en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 16, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.