Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9525
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalaycı, Can Berk-
dc.contributor.authorPolat, Olcay-
dc.contributor.authorGupta, S.M.-
dc.date.accessioned2019-08-16T13:02:26Z
dc.date.available2019-08-16T13:02:26Z
dc.date.issued2016-
dc.identifier.issn0254-5330-
dc.identifier.urihttps://hdl.handle.net/11499/9525-
dc.identifier.urihttps://doi.org/10.1007/s10479-014-1641-3-
dc.description.abstractFor remanufacturing or recycling companies, a reverse supply chain is of prime importance since it facilitates in recovering parts and materials from end-of-life products. In reverse supply chains, selective separation of desired parts and materials from returned products is achieved by means of disassembly which is a process of systematic separation of an assembly into its components, subassemblies or other groupings. Due to its high productivity and suitability for automation, disassembly line is the most efficient layout for product recovery operations. A disassembly line must be balanced to optimize the use of resources (viz., labor, money and time). In this paper, we consider a sequence-dependent disassembly line balancing problem (SDDLBP) with multiple objectives that requires the assignment of disassembly tasks to a set of ordered disassembly workstations while satisfying the disassembly precedence constraints and optimizing the effectiveness of several measures considering sequence dependent time increments. A hybrid algorithm that combines a genetic algorithm with a variable neighborhood search method (VNSGA) is proposed to solve the SDDLBP. The performance of VNSGA was thoroughly investigated using numerous data instances that have been gathered and adapted from the disassembly and the assembly line balancing literature. Using the data instances, the performance of VNSGA was compared with the best known metaheuristic methods reported in the literature. The tests demonstrated the superiority of the proposed method among all the methods considered. © 2014, Springer Science+Business Media New York.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.relation.ispartofAnnals of Operations Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAssemblyen_US
dc.subjectDisassemblyen_US
dc.subjectHybrid genetic algorithmen_US
dc.subjectMetaheuristicsen_US
dc.subjectReverse supply chainen_US
dc.subjectSequence-dependent disassembly line balancingen_US
dc.subjectVariable neighborhood searchen_US
dc.titleA hybrid genetic algorithm for sequence-dependent disassembly line balancing problemen_US
dc.typeArticleen_US
dc.identifier.volume242en_US
dc.identifier.issue2en_US
dc.identifier.startpage321
dc.identifier.startpage321en_US
dc.identifier.endpage354en_US
dc.authorid0000-0003-2355-7015-
dc.authorid0000-0003-2642-0233-
dc.identifier.doi10.1007/s10479-014-1641-3-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84902301531en_US
dc.identifier.wosWOS:000379511800008en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

162
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

133
checked on Nov 21, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.