Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/9551
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kundakcı, Nilsen | - |
dc.contributor.author | Kulak, Osman | - |
dc.date.accessioned | 2019-08-16T13:02:43Z | |
dc.date.available | 2019-08-16T13:02:43Z | |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0360-8352 | - |
dc.identifier.uri | https://hdl.handle.net/11499/9551 | - |
dc.identifier.uri | https://doi.org/10.1016/j.cie.2016.03.011 | - |
dc.description.abstract | Job shop scheduling has been the focus of a substantial amount of research over the last decade and most of these approaches are formulated and designed to address the static job shop scheduling problem. Dynamic events such as random job arrivals, machine breakdowns and changes in processing time, which are inevitable occurrences in production environment, are ignored in static job shop scheduling problem. As dynamic job shop scheduling problem is known NP-hard combinatorial optimization, this paper introduces efficient hybrid Genetic Algorithm (GA) methodologies for minimizing makespan in this kind of problem. Various benchmark problems including the number of jobs, the number of machines, and different dynamic events are generated and detailed numerical experiments are carried out to evaluate the performance of proposed methodologies. The numerical results indicate that the proposed methods produce superior solutions for well-known benchmark problems compared to those reported in the literature. © 2016 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | Computers and Industrial Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Dynamic job shop scheduling | en_US |
dc.subject | Hybrid genetic algorithm | en_US |
dc.subject | Tabu search | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Benchmarking | en_US |
dc.subject | Combinatorial optimization | en_US |
dc.subject | Genetic algorithms | en_US |
dc.subject | Numerical methods | en_US |
dc.subject | Optimization | en_US |
dc.subject | Scheduling | en_US |
dc.subject | Bench-mark problems | en_US |
dc.subject | Hybrid genetic algorithms | en_US |
dc.subject | Job shop scheduling problems | en_US |
dc.subject | Machine breakdown | en_US |
dc.subject | Minimizing makespan | en_US |
dc.subject | Numerical experiments | en_US |
dc.subject | Production environments | en_US |
dc.subject | Job shop scheduling | en_US |
dc.title | Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 96 | en_US |
dc.identifier.startpage | 31 | |
dc.identifier.startpage | 31 | en_US |
dc.identifier.endpage | 51 | en_US |
dc.authorid | 0000-0002-7283-320X | - |
dc.identifier.doi | 10.1016/j.cie.2016.03.011 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-84962137547 | en_US |
dc.identifier.wos | WOS:000376699000004 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
crisitem.author.dept | 08.04. Business Administration | - |
crisitem.author.dept | 10.09. Industrial Engineering | - |
Appears in Collections: | İktisadi ve İdari Bilimler Fakültesi Koleksiyonu Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
174
checked on Oct 13, 2024
WEB OF SCIENCETM
Citations
135
checked on Nov 22, 2024
Page view(s)
62
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.