Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9551
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKundakcı, Nilsen-
dc.contributor.authorKulak, Osman-
dc.date.accessioned2019-08-16T13:02:43Z
dc.date.available2019-08-16T13:02:43Z
dc.date.issued2016-
dc.identifier.issn0360-8352-
dc.identifier.urihttps://hdl.handle.net/11499/9551-
dc.identifier.urihttps://doi.org/10.1016/j.cie.2016.03.011-
dc.description.abstractJob shop scheduling has been the focus of a substantial amount of research over the last decade and most of these approaches are formulated and designed to address the static job shop scheduling problem. Dynamic events such as random job arrivals, machine breakdowns and changes in processing time, which are inevitable occurrences in production environment, are ignored in static job shop scheduling problem. As dynamic job shop scheduling problem is known NP-hard combinatorial optimization, this paper introduces efficient hybrid Genetic Algorithm (GA) methodologies for minimizing makespan in this kind of problem. Various benchmark problems including the number of jobs, the number of machines, and different dynamic events are generated and detailed numerical experiments are carried out to evaluate the performance of proposed methodologies. The numerical results indicate that the proposed methods produce superior solutions for well-known benchmark problems compared to those reported in the literature. © 2016 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofComputers and Industrial Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamic job shop schedulingen_US
dc.subjectHybrid genetic algorithmen_US
dc.subjectTabu searchen_US
dc.subjectAlgorithmsen_US
dc.subjectBenchmarkingen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectNumerical methodsen_US
dc.subjectOptimizationen_US
dc.subjectSchedulingen_US
dc.subjectBench-mark problemsen_US
dc.subjectHybrid genetic algorithmsen_US
dc.subjectJob shop scheduling problemsen_US
dc.subjectMachine breakdownen_US
dc.subjectMinimizing makespanen_US
dc.subjectNumerical experimentsen_US
dc.subjectProduction environmentsen_US
dc.subjectJob shop schedulingen_US
dc.titleHybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problemen_US
dc.typeArticleen_US
dc.identifier.volume96en_US
dc.identifier.startpage31
dc.identifier.startpage31en_US
dc.identifier.endpage51en_US
dc.authorid0000-0002-7283-320X-
dc.identifier.doi10.1016/j.cie.2016.03.011-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84962137547en_US
dc.identifier.wosWOS:000376699000004en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept08.04. Business Administration-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

174
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

135
checked on Nov 22, 2024

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.