Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9606
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJahed Armaghani, D.-
dc.contributor.authorMohd Amin, M.F.-
dc.contributor.authorYağız, Saffet-
dc.contributor.authorFaradonbeh, R.S.-
dc.contributor.authorAbdullah, R.A.-
dc.date.accessioned2019-08-16T13:03:22Z
dc.date.available2019-08-16T13:03:22Z
dc.date.issued2016-
dc.identifier.issn1365-1609-
dc.identifier.urihttps://hdl.handle.net/11499/9606-
dc.identifier.urihttps://doi.org/10.1016/j.ijrmms.2016.03.018-
dc.description.abstractSandstone blocks were collected from Dengkil site in Malaysia and brought to laboratory, and then intact samples prepared for testing. Rock tests, including Schmidt hammer rebound number, P-wave velocity, point load index, and UCS were conducted. The established dataset is composed of 108 cases. Consequently, the established dataset was utilized for developing the simple regression, linear, non-linear multiple regressions, artificial neural network, and a hybrid model, developed by integrating imperialist competitive algorithm with ANN. After performing the relevant models, several performance indices i.e. root mean squared error, coefficient of determination, variance account for, and total ranking, are examined for selecting the best model and comparing the obtained results. It is obtained that the ICA-ANN model is superior to the others. It is concluded that the hybrid of ICA-ANN could be used for predicting UCS of similar rock type in practice. © 2016 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Rock Mechanics and Mining Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectImperialist competitive algorithmen_US
dc.subjectNon-destructive testsen_US
dc.subjectPoint load indexen_US
dc.subjectUniaxial compressive strengthen_US
dc.subjectMean square erroren_US
dc.subjectNeural networksen_US
dc.subjectNondestructive examinationen_US
dc.subjectOptimizationen_US
dc.subjectSandstoneen_US
dc.subjectSeismic wavesen_US
dc.subjectWave propagationen_US
dc.subjectCoefficient of determinationen_US
dc.subjectImperialist competitive algorithmsen_US
dc.subjectModeling techniqueen_US
dc.subjectNon-destructive testen_US
dc.subjectPerformance indicesen_US
dc.subjectPoint loaden_US
dc.subjectRoot mean squared errorsen_US
dc.subjectCompressive strengthen_US
dc.subjectalgorithmen_US
dc.subjectartificial neural networken_US
dc.subjectcompressive strengthen_US
dc.subjectnondestructive testingen_US
dc.subjectnumerical modelen_US
dc.subjectpredictionen_US
dc.subjectrock mechanicsen_US
dc.subjectsandstoneen_US
dc.subjectuniaxial strengthen_US
dc.subjectDengkilen_US
dc.subjectMalaysiaen_US
dc.subjectSelangoren_US
dc.subjectWest Malaysiaen_US
dc.titlePrediction of the uniaxial compressive strength of sandstone using various modeling techniquesen_US
dc.typeArticleen_US
dc.identifier.volume85en_US
dc.identifier.startpage174
dc.identifier.startpage174en_US
dc.identifier.endpage186en_US
dc.identifier.doi10.1016/j.ijrmms.2016.03.018-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84962409054en_US
dc.identifier.wosWOS:000375209700017en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

141
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

126
checked on Nov 21, 2024

Page view(s)

56
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.