Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/9606
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jahed Armaghani, D. | - |
dc.contributor.author | Mohd Amin, M.F. | - |
dc.contributor.author | Yağız, Saffet | - |
dc.contributor.author | Faradonbeh, R.S. | - |
dc.contributor.author | Abdullah, R.A. | - |
dc.date.accessioned | 2019-08-16T13:03:22Z | |
dc.date.available | 2019-08-16T13:03:22Z | |
dc.date.issued | 2016 | - |
dc.identifier.issn | 1365-1609 | - |
dc.identifier.uri | https://hdl.handle.net/11499/9606 | - |
dc.identifier.uri | https://doi.org/10.1016/j.ijrmms.2016.03.018 | - |
dc.description.abstract | Sandstone blocks were collected from Dengkil site in Malaysia and brought to laboratory, and then intact samples prepared for testing. Rock tests, including Schmidt hammer rebound number, P-wave velocity, point load index, and UCS were conducted. The established dataset is composed of 108 cases. Consequently, the established dataset was utilized for developing the simple regression, linear, non-linear multiple regressions, artificial neural network, and a hybrid model, developed by integrating imperialist competitive algorithm with ANN. After performing the relevant models, several performance indices i.e. root mean squared error, coefficient of determination, variance account for, and total ranking, are examined for selecting the best model and comparing the obtained results. It is obtained that the ICA-ANN model is superior to the others. It is concluded that the hybrid of ICA-ANN could be used for predicting UCS of similar rock type in practice. © 2016 Elsevier Ltd. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd | en_US |
dc.relation.ispartof | International Journal of Rock Mechanics and Mining Sciences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | Imperialist competitive algorithm | en_US |
dc.subject | Non-destructive tests | en_US |
dc.subject | Point load index | en_US |
dc.subject | Uniaxial compressive strength | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Nondestructive examination | en_US |
dc.subject | Optimization | en_US |
dc.subject | Sandstone | en_US |
dc.subject | Seismic waves | en_US |
dc.subject | Wave propagation | en_US |
dc.subject | Coefficient of determination | en_US |
dc.subject | Imperialist competitive algorithms | en_US |
dc.subject | Modeling technique | en_US |
dc.subject | Non-destructive test | en_US |
dc.subject | Performance indices | en_US |
dc.subject | Point load | en_US |
dc.subject | Root mean squared errors | en_US |
dc.subject | Compressive strength | en_US |
dc.subject | algorithm | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | compressive strength | en_US |
dc.subject | nondestructive testing | en_US |
dc.subject | numerical model | en_US |
dc.subject | prediction | en_US |
dc.subject | rock mechanics | en_US |
dc.subject | sandstone | en_US |
dc.subject | uniaxial strength | en_US |
dc.subject | Dengkil | en_US |
dc.subject | Malaysia | en_US |
dc.subject | Selangor | en_US |
dc.subject | West Malaysia | en_US |
dc.title | Prediction of the uniaxial compressive strength of sandstone using various modeling techniques | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 85 | en_US |
dc.identifier.startpage | 174 | |
dc.identifier.startpage | 174 | en_US |
dc.identifier.endpage | 186 | en_US |
dc.identifier.doi | 10.1016/j.ijrmms.2016.03.018 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-84962409054 | en_US |
dc.identifier.wos | WOS:000375209700017 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
crisitem.author.dept | 10.08. Geological Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
141
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
126
checked on Nov 21, 2024
Page view(s)
56
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.