Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9638
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJahed Armaghani, D.-
dc.contributor.authorTonnizam Mohamad, E.-
dc.contributor.authorHajihassani, M.-
dc.contributor.authorYağız, Saffet-
dc.contributor.authorMotaghedi, H.-
dc.date.accessioned2019-08-16T13:03:45Z
dc.date.available2019-08-16T13:03:45Z
dc.date.issued2016-
dc.identifier.issn0177-0667-
dc.identifier.urihttps://hdl.handle.net/11499/9638-
dc.identifier.urihttps://doi.org/10.1007/s00366-015-0410-5-
dc.description.abstractUniaxial compressive strength (UCS) of rock is crucial for any type of projects constructed in/on rock mass. The test that is conducted to measure the UCS of rock is expensive, time consuming and having sample restriction. For this reason, the UCS of rock may be estimated using simple rock tests such as point load index (Is(50)), Schmidt hammer (Rn) and p-wave velocity (Vp) tests. To estimate the UCS of granitic rock as a function of relevant rock properties like Rn, p-wave and Is(50), the rock cores were collected from the face of the Pahang–Selangor fresh water tunnel in Malaysia. Afterwards, 124 samples are prepared and tested in accordance with relevant standards and the dataset is obtained. Further an established dataset is used for estimating the UCS of rock via three-nonlinear prediction tools, namely non-linear multiple regression (NLMR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). After conducting the mentioned models, considering several performance indices including coefficient of determination (R2), variance account for and root mean squared error and also using simple ranking procedure, the models were examined and the best prediction model was selected. It is concluded that the R2 equal to 0.951 for testing dataset suggests the superiority of the ANFIS model, while these values are 0.651 and 0.886 for NLMR and ANN techniques, respectively. The results pointed out that the ANFIS model can be used for predicting UCS of rocks with higher capacity in comparison with others. However, the developed model may be useful at a preliminary stage of design; it should be used with caution and only for the specified rock types. © 2015, Springer-Verlag London.en_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag London Ltden_US
dc.relation.ispartofEngineering with Computersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectArtificial neural networken_US
dc.subjectGraniteen_US
dc.subjectNon-linear multiple regressionen_US
dc.subjectUniaxial compressive strengthen_US
dc.subjectCompressive strengthen_US
dc.subjectForecastingen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy systemsen_US
dc.subjectMean square erroren_US
dc.subjectNeural networksen_US
dc.subjectSeismic wavesen_US
dc.subjectStatistical testsen_US
dc.subjectTracking (position)en_US
dc.subjectWave propagationen_US
dc.subjectCoefficient of determinationen_US
dc.subjectNon linearen_US
dc.subjectNon-linear predictionsen_US
dc.subjectPerformance indicesen_US
dc.subjectRanking proceduresen_US
dc.subjectRoot mean squared errorsen_US
dc.subjectRocksen_US
dc.titleApplication of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performancesen_US
dc.typeArticleen_US
dc.identifier.volume32en_US
dc.identifier.issue2en_US
dc.identifier.startpage189
dc.identifier.startpage189en_US
dc.identifier.endpage206en_US
dc.identifier.doi10.1007/s00366-015-0410-5-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84961061738en_US
dc.identifier.wosWOS:000372294400002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.08. Geological Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

119
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

96
checked on Nov 21, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.