Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/9693
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelik, İbrahim | - |
dc.date.accessioned | 2019-08-16T13:04:32Z | - |
dc.date.available | 2019-08-16T13:04:32Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0170-4214 | - |
dc.identifier.uri | https://hdl.handle.net/11499/9693 | - |
dc.identifier.uri | https://doi.org/10.1002/mma.3487 | - |
dc.description.abstract | In this paper, new and efficient numerical method, called as Chebyshev wavelet collocation method, is proposed for the solutions of generalized Burgers-Huxley equation. This method is based on the approximation by the truncated Chebyshev wavelet series. By using the Chebyshev collocation points, algebraic equation system has been obtained and solved. Approximate solutions of the generalized Burgers-Huxley equation are compared with exact solutions. These calculations demonstrate that the accuracy of the Chebyshev wavelet collocation solutions is quite high even in the case of a small number of grid points. Copyright © 2015 John Wiley & Sons, Ltd. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Ltd | en_US |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | approximate solution | en_US |
dc.subject | Chebyshev wavelets | en_US |
dc.subject | collocation | en_US |
dc.subject | generalized Burgers-Huxley equation | en_US |
dc.subject | nonlinear PDE | en_US |
dc.subject | subclass65M70 | en_US |
dc.subject | Numerical methods | en_US |
dc.subject | Approximate solution | en_US |
dc.subject | Chebyshev | en_US |
dc.subject | Collocation | en_US |
dc.subject | Generalized Burgers-Huxley equations | en_US |
dc.subject | Non linear PDE | en_US |
dc.subject | Subclass65M70 | en_US |
dc.subject | Nonlinear equations | en_US |
dc.title | Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 39 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 366 | - |
dc.identifier.startpage | 366 | en_US |
dc.identifier.endpage | 377 | en_US |
dc.authorid | 0000-0003-0398-9304 | - |
dc.identifier.doi | 10.1002/mma.3487 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-84956962302 | en_US |
dc.identifier.wos | WOS:000368833800003 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
50
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
43
checked on Nov 21, 2024
Page view(s)
36
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.