Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇomak, Emre-
dc.date.accessioned2019-08-16T13:05:59Z
dc.date.available2019-08-16T13:05:59Z
dc.date.issued2016-
dc.identifier.issn1300-0632-
dc.identifier.urihttps://hdl.handle.net/11499/9788-
dc.identifier.urihttps://doi.org/10.3906/elk-1306-39-
dc.description.abstractIn this study, an improved particle swarm optimization (PSO) algorithm, including 4 types of new velocity updating formulae (each is equal to the traditional PSO), was introduced. This algorithm was called the reverse direction supported particle swarm optimization (RDS-PSO) algorithm. The RDS-PSO algorithm has the potential to extend the diversity and generalization of traditional PSO by regulating the reverse direction information adaptively. To implement this extension, 2 new constants were added to the velocity update equation of the traditional PSO, and these constants were regulated through 2 alternative procedures, i.e. max{min-based and cosine amplitude-based diversity-evaluating procedures. The 4 most commonly used benchmark functions were used to test the general optimization performances of the RDS-PSO algorithm with 3 different velocity updates, RDS-PSO without a regulating procedure, and the traditional PSO with linearly increasing/decreasing inertia weight. All PSO algorithms were also implemented in 4 modes, and their experimental results were compared. According to the experimental results, RDS-PSO 3 showed the best optimization performance. ©2016 Tübitak.en_US
dc.language.isoenen_US
dc.publisherTurkiye Klinikleri Journal of Medical Sciencesen_US
dc.relation.ispartofTurkish Journal of Electrical Engineering and Computer Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCosine amplitudeen_US
dc.subjectDiversity regulationen_US
dc.subjectMax{minen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectAlgorithmsen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectAlternative proceduresen_US
dc.subjectBenchmark functionsen_US
dc.subjectGeneral optimizationsen_US
dc.subjectGeneralized particlesen_US
dc.subjectParticle swarm optimization algorithmen_US
dc.subjectVelocity update equationen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.titleA generalized particle swarm optimization using reverse direction informationen_US
dc.typeArticleen_US
dc.identifier.volume24en_US
dc.identifier.issue2en_US
dc.identifier.startpage639
dc.identifier.startpage639en_US
dc.identifier.endpage655en_US
dc.identifier.doi10.3906/elk-1306-39-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84962602855en_US
dc.identifier.wosWOS:000369325300022en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
A generalized particle swarm optimization using reverse direction.pdf271.01 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

58
checked on Aug 24, 2024

Download(s)

22
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.