Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGören, Hacer Güner-
dc.contributor.authorTunalı, Semra-
dc.date.accessioned2019-08-16T13:06:33Z-
dc.date.available2019-08-16T13:06:33Z-
dc.date.issued2016-
dc.identifier.issn1751-5254-
dc.identifier.urihttps://hdl.handle.net/11499/9829-
dc.identifier.urihttps://doi.org/10.1504/EJIE.2016.081019-
dc.description.abstractThe classical capacitated lot sizing problem is shown to be NP-hard for even a single item problem. This study deals with an extended version of this problem with setup carryover and backordering. To solve this computationally difficult lot sizing problem, we propose a number of hybrid meta-heuristic approaches consisting of genetic algorithms and a mixed integer programming-based heuristic. This MIP-based heuristic is combined with two types of decomposition schemes (i.e., product and time decomposition) to generate subproblems. Computational experiments are carried out on various problem sizes. We found that hybrid approaches employing only time decomposition scheme or combination of both time and product decomposition schemes in different forms outperform the other hybrid approaches. Moreover, we investigated the sensitivity of the two best performing approaches to changes in problem-specific parameters including backorder costs, setup times, setup costs, capacity utilisation and demand variability. Copyright © 2016 Inderscience Enterprises Ltd.en_US
dc.language.isoenen_US
dc.publisherInderscience Enterprises Ltd.en_US
dc.relation.ispartofEuropean Journal of Industrial Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBackorderingen_US
dc.subjectHybrid approachesen_US
dc.subjectlot sizingen_US
dc.subjectPaired-t testen_US
dc.subjectSensitivity analysisen_US
dc.subjectSetup carryoveren_US
dc.subjectGenetic algorithmsen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectHeuristic methodsen_US
dc.subjectHeuristic programmingen_US
dc.subjectHybrid approachen_US
dc.subjectLot sizingen_US
dc.subjectSetup carryoversen_US
dc.subjectT-testsen_US
dc.subjectInteger programmingen_US
dc.titleA comparative study of hybrid approaches for solving capacitated lot sizing problem with setup carryover and backorderingen_US
dc.typeArticleen_US
dc.identifier.volume10en_US
dc.identifier.issue6en_US
dc.identifier.startpage683-
dc.identifier.startpage683en_US
dc.identifier.endpage702en_US
dc.authorid0000-0003-0297-7571-
dc.identifier.doi10.1504/EJIE.2016.081019-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85006925507en_US
dc.identifier.wosWOS:000397249500001en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Jan 4, 2025

WEB OF SCIENCETM
Citations

4
checked on Apr 3, 2025

Page view(s)

46
checked on Feb 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.