Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9969
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYağız, Saffet-
dc.contributor.authorKarahan, Halil.-
dc.date.accessioned2019-08-16T13:08:25Z-
dc.date.available2019-08-16T13:08:25Z-
dc.date.issued2015-
dc.identifier.issn1365-1609-
dc.identifier.urihttps://hdl.handle.net/11499/9969-
dc.identifier.urihttps://doi.org/10.1016/j.ijrmms.2015.09.019-
dc.description.abstractThe aim of this study is to develop prediction models for estimating tunnel boring machine (TBM) performance using various optimization techniques including Differential Evolution (DE), Hybrid Harmony Search (HS-BFGS) and Grey Wolf Optimizer (GWO), and then to compare the results obtained from introduced models and also in literature. For this purpose, the Queens Water Tunnel, in New York City, was selected as a case study to test the proposed model. From each modeling technique, seven different models, (M1-M7) were developed using the assortment of datasets having various percentage of rock type. In order to find out the optimal values of the parameters and prevent over-fitting, 80% of the total data were selected randomly for training set and the rest were kept for testing the model. Further, the developed models were compared according to the coefficient of correlations (R2), computer process unit (CPU) and number of function evaluation (NFE) values to choice the best accurate and most efficient model. It is found that there is no salient difference between the models according to the R2 values; however, it is concluded that the M7 generated via HS-BFGS algorithm consistently converges faster than both the DE and GWO. Also, total CPU time required by HS-BFGS for M7 was the shortest one. As a result, Model 7 developed using the HS-BFGS is considered to be better, especially for simulations in which computational time and efficiency is a critical factor. © 2015 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Rock Mechanics and Mining Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectModelingen_US
dc.subjectOptimization techniquesen_US
dc.subjectRock massen_US
dc.subjectTBM penetration rateen_US
dc.subjectBoring machines (machine tools)en_US
dc.subjectComputational efficiencyen_US
dc.subjectConstruction equipmenten_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectModelsen_US
dc.subjectOptimizationen_US
dc.subjectRock mechanicsen_US
dc.subjectCoefficient of correlationen_US
dc.subjectComputational timeen_US
dc.subjectDifferential Evolutionen_US
dc.subjectModeling techniqueen_US
dc.subjectPenetration ratesen_US
dc.subjectTunnel boring machine(TBM)en_US
dc.subjectRocksen_US
dc.subjectalgorithmen_US
dc.subjectnumerical modelen_US
dc.subjectoptimizationen_US
dc.subjectrock mass responseen_US
dc.subjectTBMen_US
dc.subjectNew York [New York (STT)]en_US
dc.subjectNew York [United States]en_US
dc.subjectUnited Statesen_US
dc.titleApplication of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock massen_US
dc.typeArticleen_US
dc.identifier.volume80en_US
dc.identifier.startpage308-
dc.identifier.startpage308en_US
dc.identifier.endpage315en_US
dc.identifier.doi10.1016/j.ijrmms.2015.09.019-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84945259167en_US
dc.identifier.wosWOS:000365587900031en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.08. Geological Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

110
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

102
checked on Nov 21, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.