Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10617
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T13:31:55Z
dc.date.available2019-08-16T13:31:55Z
dc.date.issued2018-
dc.identifier.isbn9781538676981-
dc.identifier.urihttps://hdl.handle.net/11499/10617-
dc.identifier.urihttps://doi.org/10.1109/CCTA.2018.8511434-
dc.description.abstractThis paper proposes a novel state space least squares support vector machine (SS LS-SVM) for polynomial nonlinear state space (PNLSS) model based recursive system identification. SS LS-SVM, which also possesses an adaptive kernel function, provides an optimum formulation of the monomials (?) of the states and input in the PNLSS model. Hence, the PNLSS model encompasses the proposed SS LS-SVM. Recursive nonlinear state space identification is developed in the output error prediction context. The input-output observations are processed sequentially, hence leading to recursive update of the parameters using conventional Gauss-Newton optimization. System states do not need to be measured. However, to to yield a conformal representation of the actual system, number of states need to be known via some physical insight. This characterizes the identification procedure as a grey box one. The PNLSS model is employed in the generalized predictive control (GPC) of a nonlinear continuously stirred tank reactor (CSTR) system. The case which includes additive white noise on the output measurements and a time-varying parameter in the nonlinear system is considered. Numerical applications give the results of a high closed loop identification performance addition to the smooth control input and closely tracking the reference in the GPC scheme. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlinear systemsen_US
dc.subjectPredictive control systemsen_US
dc.subjectState space methodsen_US
dc.subjectSupport vector machinesen_US
dc.subjectVector spacesen_US
dc.subjectWhite noiseen_US
dc.subjectAdaptive kernel functionsen_US
dc.subjectClosed loop identificationen_US
dc.subjectContinuously stirred tank reactoren_US
dc.subjectGauss-Newton optimizationen_US
dc.subjectGeneralized predictive controlen_US
dc.subjectIdentification procedureen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectNonlinear state space modelsen_US
dc.subjectModel predictive controlen_US
dc.titleState space ls-svm for polynomial nonlinear state space model based generalized predictive control of nonlinear systemsen_US
dc.typeConference Objecten_US
dc.identifier.startpage324
dc.identifier.startpage324en_US
dc.identifier.endpage330en_US
dc.identifier.doi10.1109/CCTA.2018.8511434-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85056902617en_US
dc.identifier.wosWOS:000461414700050en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.